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L2 is a Hermitian operator

Abstract
A proof that square of the angular momentum vector is a Hermitian operator.
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angular momentum, operator algebra
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The second part of L2 operator is easier to handle. The relevant part of the integral is the ϕ integral, which
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where we dropped the first terms in the first two lines as the they are the difference of the integrand at
ϕ = 2π and ϕ = 0, and that is zero as ϕ coordinate is 2π periodic.

The first part of L2 operator seems to be harder because when we integrate by parts ∂
∂θ will act on sin θ,

which will complicate the problem. However, we can avoid it by a change of variable u = cos θ. The relevant
part of the integral is the dcosθ integral, and with the above transformation it becomes,
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where we dropped again some surface terms as u2 − 1 = 0 at u = ±1. (If you prefer sin θdθ integral instead
of dcosθ integral, you will not need to change the variable.) This completes the proof that L2 is Hermitian.
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