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Abstract
A quick derivation of ANO vortices in the context of spontaneous symmetry breaking.
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Topological defects are remnants of spontaneously broken local or global symmetries. They appear in many
fields of physics ranging from high energy physics to solid state physics. One of the most well known
topological defects appears in magnetic materials. Let us consider a material which is composed of clusters
with magnetic moments. The dynamics of the system can be described by a Heisenberg type Hamiltonian,
which is invariant under rotations, i.e. there are no preferred directions for the system. However, the physical
realization of the ground state of the system is not rotationally invariant. The direction of the magnetic
moments are chosen randomly at different locations. Nearby moments align with each other and create a
domain structure. The magnetization smoothly interpolates between different domains, and the width of
the transition range is the thickness of the domain wall. The domain wall is the topological defect that
emerges upon breaking of the rotational symmetry of the system by randomly chosen magnetization. This is
an example of spontaneously broken global symmetry. The domain walls are physical objects: they carry
(magnetic) energy, and they can be moved or rotated by external currents or magnetic fields.

An example of spontaneously broken local symmetry occurs in superconducting materials. If a superconducting
material is placed in a strong magnetic field, the magnetic field penetrates into the material at certain locations
at which the superconductivity is lost. The magnetic field forms flux tubes which are one dimensional
topological defects known as Abrikosov-Nielsen-Olesen flux tubes [1]. Abrikosov-Nielsen-Olesen flux tubes are
topological defects associated with spontaneously broken U(1) gauge symmetry. For the case of high energy
physics, vortices or strings may form as a result of spontaneously broken unified theories. In the following
sections we first outline the field theoretical background of formation of topological defects. In the first part
of the thesis, we focus on vortices. We consider normalization of the mass and central charge of vortices
in N = 2 supersymmetric field theory. In the second part of the thesis, we consider strings which can be
constructed as vortices extended along an additional dimension. We then discuss the SBGW due cusps and
kinks on cosmic strings.

1 Formation of Topological Defects
Topological defects are relics of spontaneously broken symmetries. The exact nature of the defect depends on
the group of the symmetry broken. Below we consider two important cases.

1.1 Spontaneously Broken Global Symmetries
Let us consider the Lagrangian for a complex scalar field:

L = ∂µφ∂µφ∗ − V (φ, φ∗). (1)
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The potential can be chosen to be of the form

V (φ, φ∗) = λ2

2

(
|φ|2 − η2

2

)2

, (2)

which is shown in Fig. 1.

Figure 1: The quartic scalar potential.

The Lagrangian in Eq. (1) has a global U(1) symmetry, i.e. it remains invariant under the phase rotations:

φ → eiθφ, (3)

where θ is a constant real number. Although the field theory defined by the Lagrangian in Eq. (1) is invariant
under the phase rotations, the vacuum state of the field is not. The vacuum state solution is given by the
field configuration that minimizes the potential, which is

φV = η√
2

eiθV . (4)

θV is the phase of field at the vacuum state, which has no physical significance since it can be removed by a
U(1) rotation. The solution φV is clearly not invariant under U(1)
rotation, hence the U(1) symmetry is spontaneously broken. The results of the broken symmetry can be seen
by expanding the field around the vacuum solution. It is convenient to separate out the radial and angular
components of the field by using the following expansion [2]

φ = η + ξ√
2

eiα, (5)

where θV is set to zero. Plugging this expansion to Eq. (1) we get

L = 1
2∂µξ∂µξ − λ2η2

2 ξ2 + η2

2 ∂µα∂µα + interaction terms. (6)

The first two terms in the effective Lagrangian in Eq. (6) represent a neutral particle ξ which has mass
λ η . It is important to note that ξ corresponds to the radial excitation in the potential well, therefore the
particle sees the curvature of the potential. On the other hand, the field α has no mass term in Eq. (6). It
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corresponds to the angular excitation in the Mexican hat-shaped potential. This massless mode is referred
to as the Goldstone Boson. Whenever a global symmetry is spontaneously broken Goldstone Bosons which
correspond to the excitation of the fields along the flat directions of the potential are generated. On the
other hand, if the broken symmetry is a local symmetry, the degrees of freedom of the excitations along
the flat directions are absorbed into the longitudinal component of gauge bosons which acquire mass upon
spontaneously breaking the symmetry. This mechanism is crucial for the formation of vortices and flux tubes
and hence it is discussed in detail below.

1.2 Spontaneously Broken Local Symmetries
In order to make the global U(1) symmetry defined in Eq. (3) local, one introduces a gauge field Aµ with the
following transformation

Aµ → Aµ − 1
e

∂µθ(x), (7)

where e is the coupling constant. The partial derivatives are replaced with the gauge covariant derivatives

Dµ = ∂µ + ieAµ. (8)

With these definitions, the local U(1) invariant Lagrangian can be written as

L = DµφDµφ∗ − V (φ, φ∗) − 1
4FµνF µν , (9)

where
Fµν = ∂µAν − ∂νAµ (10)

is the field strength of the gauge field. The vacuum solutions are still as given in Eq. (4) and we can use the
expansion in Eq. (5). With this expansion the kinetic term in Eq. (9) can be written as

LK = DµφDµφ∗

= (∂µ + ieAµ)(η + ξ√
2

eiα)(∂µ − ieAµ)(η + ξ√
2

e−iα)

= 1
2∂µξ∂µξ + 1

2(∂µα + eAµ)(∂µα + eAµ)(η + ξ)2. (11)

We note that ∂µα term can be absorbed into Aµ by gauging as described in Eq. (7), which shows that
the would-be Goldstone boson is absorbed into the longitudinal component of the vector field. The full
Lagrangian can be written as

L = 1
2∂µξ∂µξ − λ2η2

2 ξ2 + 1
2η2AµAµ − 1

4FµνF µν + interaction terms, (12)

which describes an interacting theory with a massive scalar and massive vector field. The number of degrees
of freedom before and after the symmetry breaking is the same: one degree of freedom from the complex field
is transferred to the vector field, which becomes massive, and hence it can have longitudinal polarization.

2 Vortices and Strings
In this section we reproduce the vortex solutions for a spontaneously broken local Abelian symmetry in 2 + 1
dimensions. The Lagrangian for a complex scalar field coupled to the gauge field is given by

L = DµφDµφ∗ − e2

2
(
|φ|2 − η2)2 − 1

4FµνF µν . (13)

We would like to consider the static solutions in 2 + 1 dimensions. Eliminating the terms with time derivatives
we can express the energy density as

E = −L = DkφDkφ∗ + e2

2
(
|φ|2 − η2)2 + 1

2Fk lF
k l, (14)

3



where k = 1, 2 denotes the space indices. It is important to note that the potential chosen here is a special
case of Eq. (2), where λ is set to e , which is the the coupling constant (and also note that η is re-scaled
by a factor

√
2 ). In this special case the equations of motion, which are a priori second order differential

equations, can be reduced to first order differential equations by Bogomol’nyi completion [3]. The energy
density given in Eq. (14) can be written in the following form

E = 1
2 |(Dk + iϵklDl)φ|2 + 1

2
(
F12 + e(|φ|2 − η2)

)2 + ϵkl∂l(eη2Al − iφ∗Dlφ), (15)

where ϵkl is the two dimensional Levi-Civita tensor with the convention ϵ12 = 1 . The first two terms in this
equation are positive definite and the last one is a boundary term. Therefore the energy can be minimized if
the following equations are satisfied:

(D1 ± iD2)φ = 0,

F12 + e(|φ|2 − η2) = 0, (16)

which are first order Bogomol’nyi equations. The last term in Eq. (15) is a surface term. If one integrates
the last term over space coordinates, the result reads

Z ≡
∫

d2xϵkl∂l(eη2Al − iφ∗Dlφ) = eη2
∫

r→∞
rdθAθ, (17)

which is proportional to the winding number of the gauge field (The second term in Eq. 17 vanishes exponen-
tially.) Z is referred to as the central charge, since it commutes with the generators of the supersymmetric
extension of the model (To be more precise, for the case of vortex, Z commutes with a portion of the
supersymmetry generators. The asymptotic solutions of the Bogomol’nyi equations are

φ = ηeinθ,

Ak = −n
ϵklx

l

r2 , (18)

where n is an integer that represents the winding number. The magnetic field corresponding to the vector
potential is F12 and it is confined to a region with radius of scale 1/η . This is again in agreement with
the conclusion that the gauge boson acquires a mass of η , and therefore the interaction strength decays
exponentially with the distance.

The mass of vortex configuration reads

M ≡
∫

d2xE = Z = 2πη2|n|. (19)

The equality of the mass and central charge is called the Bogomol’nyi Prasad Sommerfield (BPS) saturation.
The BPS saturation is far from coincidence: it holds even under quantum corrections in supersymmetric
extensions. If the vortex configuration is extended along the z -axis, the result is a flux tube. The mass per
unit length of the tube can be described as the tension, and Eq. (19) shows that the tension is proportional
to the square of η , which is the energy scale of the phase transition. Therefore the tension of the string
critically depends on the energy scale of the symmetry breaking.
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