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Canonical Transformations

Abstract

Finding the equation of motion for a strange Lagrangian.

Index Terms

Hamiltonian, Lagrangian

Consider the following, unusual Lagrangian:

L =
√

q2 + q̇2 − 1
2q2. (1)

We are going to try to solve the equations of motion for this Lagrangian. This is going to be a long-
winded answer. We will argue that moving to the Hamiltonian picture makes our life much easier. Let us
first build the bridge between the Lagrangian and Hamiltonian represetations, which is done via the Legendre
transforms. We will discuss that the problem can be further simplified by shuffling the coordinates, which
will take as to tour through canonical transformations and Poisson brackets. Let’ get started with some
variational calculus.

I. Lagrangian representation

A functional can be considered as an operation that takes in a function and returns a number. The most
familiar functional is integration with fixed limits. It takes in f and returns S =

∫ b

a
f(t)dt, which is just a

number. In a typical mechanics problem, the functional S will be of the form:

S =
∫ t1

t0

L (q, q̇)dt, (2)

where L is the Lagrangian, and q = q(t) is the generalized coordinate with q̇ = dq
dt . Let’s assume that we

have a function q(t) that gives the minimum value for S . If we fiddle q around the optimal function by a
small amount αη(t), i.e., q(t) → q(t) + αη(t), where η(t) is an arbitrary function and α is a small number,
then the change in S should be 0. This is analogous to requiring that the derivative of a function f should
vanish at a local extremum , that is: df(t)

dt |t=t∗ = 0. Rigorously speaking [1], we can define the following
functional

S (α) =
∫ t1

t0

L (q + αη, q̇ + αη̇)dt, (3)

and require that
d

dα
S (α)

∣∣∣∣
α=0

= 0. (4)

Consider a problem where the end points are specified. This implies that we are not free to wiggle q at the
end points t0 and t1, i.e.,

η(t0) = η(t1) = 0. (5)

The variation is illustrated in Fig. 1.
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Figure 1: The orange curve q(t), which is unknown at the moment, gives the minimum value for the functional
S . The green curve represents the new curve with random deformations around q(t). The variation η(t)
must vanish at the end points since the values of q are fixed at these points.

Keeping the boundary conditions in Eq. (5) in mind, let us calculate Eq. (4):

d

dα
S (α)

∣∣∣∣
α=0

=
∫ t1

t0

d

dα
L (q + αη, q̇ + αη̇(t))

∣∣∣∣
α=0

dt =
∫ t1

t0

[
∂

∂q
L (q, q̇)η + ∂

∂q̇
L (q, q̇)dη

dt

]
dt

=
∫ t1

t0

[
∂

∂q
L (q, q̇)η + d

dt

(
∂

∂q̇
L (q, q̇)η

)
− d

dt

(
∂

∂q̇
L (q, q̇)

)
η

]
dt

=
∫ t1

t0

[
∂L (q, q̇)

∂q
− d

dt

(
∂L (q, q̇)

∂q̇

)]
ηdt +

��
����

∂L (q, q̇)
∂q̇

η

∣∣∣∣t1

t0

=
∫ t1

t0

[
∂L (q, q̇)

∂q
− d

dt

(
∂L (q, q̇)

∂q̇

)]
ηdt, (6)

where the boundary terms vanish due to the constraints in Eq. (5). Since η is an arbitrary function, in order
to set this equation to 0, we require the following:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0, (7)

which is known as the Euler-Lagrange equation.

A. Gauge invariance

Since the action in Eq. (2) is defined as an integral with fixed end points, adding a total derivative to
the integrand, i.e., the Lagrangian, will only add a constant to the action. Since the equations of motion
are derived by variation, constants added to the action will not change the result. To quantify this, let us
consider the transformed Lagrangian:

L̃ = L + d

dt
[Λ(q, t)] = L + ∂Λ(q, t)

∂q
q̇ + ∂Λ(q, t)

∂t
(8)

for any differentiable function Λ(q, t). Now let’s take L = L̃ − d
dt [Λ(q, t)] and insert that into Eq. (7) to

get

d

dt

(
∂L̃

∂q̇

)
− ∂L̃

∂q
= d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ∂2Λ(q, t)

∂t∂q
− ∂2Λ(q, t)

∂t∂q
= d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (9)
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which shows that although L̃ and L are totall different functions, they satisfy the same differential equation
yielding the same equation of motion.

II. Hamiltonian representation
We first define the conjugate momenta p as

p ≡ ∂L

∂q̇
, (10)

and the Legendre transform as

H (q, p) = pq̇ − L (q, q̇), (11)

which will enable us to move from the independent variables {q, q̇} to {q, p}. We can now compute the
differential of this new quantity H by expanding out the right hand side as

dH (q, p) = dp q̇ + p
∂q̇

∂p
dp + p

∂q̇

∂q
dq − ∂L

∂q
dq − ∂L

∂q̇

∂q̇

∂p
dp − ∂L

∂q̇

∂q̇

∂q
dq

= dp

[
q̇ + ∂q̇

∂p��
����(

p − ∂L

∂q̇

)]
+ dq

[
−∂L

∂q
− ∂q̇

∂q��
����(

∂L

∂q̇
− p

)]
, (12)

where the terms in the parenthesis are zero due to the definition in Eq. (10) . Therefore we get:

dH (q, p) = dp q̇ − dq
∂L

∂q
= dp q̇ − dq

d

dt

(
∂L

∂q̇

)
= dp q̇ − dq ṗ. (13)

We can also write the dH (q, p) in terms of its functional arguments:

dH (q, p) = dq
∂H

∂q
+ dp

∂H

∂p
. (14)

Matching the coefficients of the differentials in Eqs. (13) and (14), we arrive at the Hamitonian equations
of motions:

q̇ = ∂H

∂p
, and ṗ = −∂H

∂q
, (15)

and this is how one moves from the Lagrangian equations to Hamiltonian equations via the Legendre
transform.

III. Poisson brackets
The Poisson brackets are discussed in the advanced classical mechanics classes, which ironically comes later

in the cirriculum after quantum physics classes. When the commutator relations in quantum mechanics is
discussed, they are motivated as an extension of the Poisson brackets as a link between classical mechanics
and quantum mechanics. I will reproduce the derivations from [2] with slightly different notation.

We will take two continuous functions, F and G, which are functions of the generalized coordinates (pi, qi)
and possible the time t, and the define the Poisson bracket operation on them as follows:

{F, G}qp ≡ {F, G} =
(

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
, (16)

where the sum over the repeating index is implied, and we dropped the undescore qp from the bracket
for simplicity. Let us introduce another continuous function M to write a few key features of the bracket.

i. Poisson bracket is antisymmetric:

{F, G} ≡ −{G, F} =⇒ {F, F} = 0. (17)
(18)

ii. Poisson bracket is linear:

{G, F + M} = {G, F} + {G, M}. (19)
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iii. Poisson bracket follows the Leibniz rules of derivatives:

{G, FM} ≡ {G, F}M + F{G, M}. (20)

iv. Poisson bracket satisfies the Jacobi identity:

{F, {G, M}} + {G, {M, F}} + {M{F, G}} = 0. (21)

We can try something interesting and take F = qk and G = ql and see what the Poisson bracket returns:

{qk, ql} = ∂qk

∂qi

∂ql

∂pi
− ∂ql

∂pi

∂qk

∂qi
= 0. (22)

We can also try F = pk and G = pl:

{pk, pl} = ∂pk

∂qi

∂pl

∂pi
− ∂pl

∂pi

∂pk

∂qi
= 0. (23)

Let us finally try the cross term F = qk and G = pl:

{qk, pl} = ∂qk

∂qi

∂pl

∂pi
− ∂pl

∂pi

∂qk

∂qi
= δkiδli = δkl. (24)

Since they are based on the canonical variables themselves, these brackets are called the fundamental
Poisson brackets. The only nontrivial bracket is the one in Eq. (24), and it is nonzero when the selected
momenta is the conjugate variable of the selected coordinate, i.e.,

{qk, pk}pq = 1. (25)

The reader with sharp eyes will notice that this is similar to the commutation relation between x and p in
quantum mechanics.

A. Invariance

Let us consider a change of variables from (q, p) to a new set (Q(q, p, t), P (q, p, t)). We can rewrite Eq.
(16) as:

{F, G}qp = ∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=

(
∂F

∂Qj

∂Qj

∂qi
+ ∂F

∂Pj

∂Pj

∂qi

)
∂G

∂pi
−

(
∂F

∂Qj

∂Qj

∂pi
+ ∂F

∂Pj

∂Pj

∂pi

)
∂G

∂qi

= ∂F

∂Qj

(
∂Qj

∂qi

∂G

∂pi
− ∂Qj

∂pi

∂G

∂qi

)
+ ∂F

∂Pj

(
∂Pj

∂qi

∂G

∂pi
− ∂Pj

∂pi

∂G

∂qi

)
= ∂F

∂Qj
{Qj , G}qp + ∂F

∂Pj
{Pj , G}qp (26)

Let’s take G = Qk, which will remove one of the terms since {Qj , Qk; }qp = 0. It will also collapse the
implied summation of j since {Pj , Qk}qp = −δjk to yield:

{F, Qk}qp = − ∂F

∂Pk
(27)

If we set G = Pk, we get

{F, Pk}qp = ∂F

∂Qk
. (28)

We take the results from Eqs. (27) and (28), relabel F as G, k as j and insert them in to the last line of
Eq. (26) to show:

{F, G}qp = ∂F

∂Qj

∂G

∂Pj
− ∂F

∂Pj

∂G

∂Qj
= {F, G}QP . (29)
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This is pretty neat since we can drop the subscripts (q, p) and (Q, P ). This tells us that the Poisson bracket
is invariant under canonical transformation of canonical variables, or equivalently, the transformations that
leave the bracket unchanged are canonical.

IV. Transformation
The first advantage of the Hamiltonian representation is that it is first order in derivatives compared to

the Lagrangian case, which is second order. Furthermore, the Hamiltonian can be transformed to further
simplify the process to solve the equations of motion. Just like any other transformation, we will move from
the original coordinates, (q, p), to a new set (Q(q, p, t), P (q, p, t)) so that the equations become easier to solve
in the new space. We solve them there and inverse transform back to the original variables. We will limit
the transformations to the canonical ones, which preserve the canonical form of Hamilton’s equations of
motion given in Eq. (15). As we move from (q, p) to (Q, P ), H moves to H, and L moves to L. We require

Q̇ = ∂H(Q, P, t)
∂P

, and Ṗ = −∂H(Q, P, t)
∂Q

. (30)

The least action principle in Eq. (4) for the original Lagrangian, L can be expressed as:

δS = δ

∫ t2

t1

L (q, q̇, t)dt = δ

∫ t2

t1

[pq̇ − H (q, p, t)]dt = 0. (31)

For the new Lagrangian, L, the least action requirement reads:

δS = δ

∫ t2

t1

L(Q, Q̇, t)dt = δ

∫ t2

t1

[
PQ̇ − H(Q, P, t)

]
dt = 0 (32)

But we showed earlier L and L must be related by the total time derivative of a gauge function F such
that

dF

dt
= L − L (33)

The generating function F can be a function of the old and new canonical variables p, q, P , Q and t which
results in the following relation:

pq̇ − H (q, p, t) =
[
PQ̇ − H(Q, P, t)

]
+ dF

dt
. (34)

Let us look at various types of generating functions: F1(q, Q, t), F2(q, P, t), F3(p, Q, t), and F4(p, P, t) [2].

A. F = F1(q, Q, t):
The total time derivative of F = F1(q, Q, t) reads

dF (q, Q, t)
dt

= ∂F1(q, Q, t)
∂q

q̇ + ∂F1(q, Q, t)
∂Q

Q̇ + ∂F1(q, Q, t)
∂t

. (35)

Inserting this into Eq. (34) gives[
p − ∂F1(q, Q, t)

∂q

]
q̇ − H (q, p, t) =

[
P + ∂F1(q, Q, t)

∂Q

]
Q̇ − H(Q, P, t) + ∂F1(q, Q, t)

∂t
. (36)

If we choose F1 as follows:

p = ∂F1(q, Q, t)
∂q

P = −∂F1(q, Q, t)
∂Q

, (37)

we can cancel Legendre terms to get a simple transformation:

H(Q, P, t) = H (q, p, t) + ∂F1(q, Q, t)
∂t

. (38)
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B. F = F2(q, P, t) − QP :

The total time derivative of F = F2(q, P, t) − QP reads
dF

dt
= ∂F2(q, P, t)

∂q
q̇ + ∂F2(q, P, t)

∂P
Ṗ − PQ̇ − ṖQ + ∂F2(q, P, t)

∂t
(39)

Inserting this into Eq. (34) gives(
p − ∂F2(q, P, t)

∂q

)
q̇ − H (q, p, t) = PQ̇ − PQ̇ +

[
∂F2(q, P, t)

∂P
− Q

]
Ṗ − H(Q, P, t) + ∂F2(q, P, t)

∂t
. (40)

If we choose F2 as follows:

p = ∂F2(q, P, t)
∂q

Q = ∂F2(q, P, t)
∂P

, (41)

we simply get:

H(Q, P, t) = H (q, p, t) + ∂F2(q, P, t)
∂t

(42)

C. F = F3(p, Q, t) + qp:

The total time derivative of F = F3(p, Q, t) + qp reads
dF

dt
= ∂F3(p, Q, t)

∂p
ṗ + ∂F3(p, Q, t)

∂Q
Q̇ + q̇p + qṗ + ∂F3(p, Q, t)

∂t
(43)

Inserting this into Eq. (34) gives

−
[
q + ∂F3(p, Q, t)

∂p

]
ṗ − H (q, p, t) =

[
P + ∂F3(p, Q, t)

∂Q

]
Q̇ − H(Q, P, t) + ∂F3(p, Q, t)

∂t
(44)

If we choose F3 as follows:

q = −∂F3(p, Q, t)
∂p

P = −∂F3(p, Q, t)
∂Q

, (45)

we end with the required transformation

H(Q, P, t) = H (q, p, t) + ∂F3(p, Q, t)
∂t

. (46)

D. F = F4(p, P, t) + qp − QP :

The total time derivative of F = F4(p, P, t) + qp − QP reads
dF

dt
= ∂F4(p, P, t)

∂p
ṗ + ∂F4(p, P, t)

∂P
ṗ + q̇p + qṗ − Q̇P − QṖ + ∂F4(p, P, t)

∂t
(47)

Inserting this into Eq. (34) gives

−
[
q + ∂F4(p, P, t)

∂p

]
ṗ − H (q, p, t) =

[
∂F4(p, P, t)

∂P
− Q

]
Ṗ − H(Q, P, t) + ∂F4(p, P, t)

∂t
(48)

If we choose F4 as follows:

q = −∂F4(p, P, t)
∂p

Q = ∂F4(p, P, t)
∂P

, (49)
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we get the required transformation

H(Q, P, t) = H (q, p, t) + ∂F4(p, P, t)
∂t

. (50)

The four generating functions we looked at are related by Legendre transformations. The properties of the
generating functions are summarized in Table 1[2].

Table 1: Canonical transformation generating functions
Generating function
Generating function derivatives
Trivial special examples
F = F1(q, Q, t)
pi = ∂F1

∂qi
Pi = − ∂F1

∂Qi

F1 = qiQi Qi = pi Pi = −qi

F = F2(q, P, t) − QP
pi = ∂F2

∂qi
Qi = ∂F2

∂Pi

F2 = qiPi Qi = qi Pi = pi

F = F3(p, Q, t) + qp
qi = − ∂F3

∂pi
Pi = − ∂F3

∂Qi

F3 = piQi Qi = −qi Pi = −pi

F = F4(p, P, t) + qp − QP
qi = − ∂F4

∂pi
Qi = ∂F4

∂Pi

F4 = piPi Qi = pi Pi = −qi

[1] L. D. Elsgolc, Calculus of variations. Dover Publications, 2007.
[2] “Canonical Transformations in Hamiltonian Mechanics.” University of Rochester, 2021.
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