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Coil calculations

Abstract
A deep dive into calculations on coils.

Index Terms
Integral, Statistics

The complexity of calculating the magnetic field and electrical properties of a coil depends on the desired
accuracy[1]. We will start with a simple model to build some intuition on the problem. We will later consider
a more sophisticated model to address the intricacies of practical devices. Figure 1 illustrates a coil of wire
carrying a current.

×
×
×
×
×
×
×
×
×
×
×

z

H

R

P

I

Figure 1: An illustration of current carrying solenoid of height H and radius R.

We will take a deep dive into the physics of coils to compute certain geometrical and electrical properties
based on practical considerations such as packing density and insulation thickness.

I. Magnetic Field
The calculation of the magnetic field is no simple task. We will start with a back of the envelope calculation.

A. A simple model
To get a feel for the overall magnetic field strength, let us start with a simplified case in which the solenoid

is very tall compared to its width, i.e., H ≫ R, and has many turns N ≫ 1. We will first be interested in
what is going on inside the coil. In the steady state, we can calculate the magnetic field using Ampere’s law:

∇ × B = µ0J, (1)
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or equivalently the integral version of it:

∫
dS · ∇ × B =

∮
dℓ · B = µ0

∫
dS · J. (2)

The integration surface dS is bounded by the closed loop dℓ as shown in red in Figure 2.
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Figure 2: At the lowest order approximation, the field outside the coil is negligible. The z component of the
field is also constant in this limit.

The magnetic field outside the coil will be zero in this approximation (up to 1/N terms). The amount of
current passing through the surface is given by I × Number of of turns in the loop = I × N

H l. Furthermore,
the only contribution to the line integral comes from the path inside the coil which gives lBz. Therefore we
get the following simple expression for the magnetic field inside the coil:

Bz = µ0I × N

H
= µ0In, (3)

where n ≡ N
H is the number of turns per unit length. Self inductance of a coil is defined as the magnetic

flux linkage per unit current in the loop :

Lc = Φ
I

= N AreaBz

I
= µ0

AN2

H
, (4)

Note that if we had some magnetic material inside the coil, the magnetic field would have been different.
If the material is fully inserted, we can simply replace µ0 with µc, which is the permeability of the material.
In such cases, the magnetic field becomes:

Bz = µcI × N

H
= µcIn, (5)

B. A more realistic model

We need a more precise model of the magnetic field created by the solenoid. Let us start simple and look
at the magnetic field of a single circular loop with a current as in Fig. 3.
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Figure 3: A single loop of current. We are mostly interested in the field on the z axis.

The magnetic field at an arbitrary point r is given by the Biot-Savart law[2]:

B(r) = µ0

4π

∫
c

Idℓ′ × (r − r′)
(r − r′)3 , (6)

where we use the primed coordinates for the source points.
We will be mostly interested in the ẑ component of the magnetic field on the z-axis, and this will simplify

our life immensely: r = zẑ , dℓ′ = dℓ′ϕ̂′, and r−r′ = zẑ−Rr̂ giving dℓ′ ×(r̂− r̂′) = dℓ (zr̂ +Rẑ). Furthermore
|r − r′| =

√
R2 + z2, and dℓ′ = Rdϕ′. Therefore the magnetic field on the z axis is the following:

B(r) = µ0I

4π

∫
c

Rdϕ′ (zr̂ +Rẑ)
(R2 + z2)

3
2

= µ0I

4π
�
���

���*
0∫

c

Rdϕ′zr̂
(R2 + z2)

3
2

+ µ0IR
2

4π

∫
c

dϕ′ẑ
(R2 + z2)

3
2

= µ0IR
2

2 (R2 + z2)
3
2

ẑ, (7)

where the component along r̂ drops off due to symmetry as we integrate over ϕ′. The magnetic field in Eq.
(7) has its maximum value at z = 0, and we can expand it around z = 0 for small z to get the following:

B(r) = µ0I

2R
(
1 + z2

R2

) 3
2

ẑ ≃ µ0I

2R

(
1 − 3

2
z2

R2

)
ẑ, (8)

which shows that it can be modeled as a quadratic function around the origin.
Figure 3 shows a single loop sitting at z = 0. If the solenoid has a finite height, let’s call it H, it will be

many such single loops stacked on top of each other. Let’s label the positions of these loops as z′. If we take
a small slice of these loops from z′ to z′ + dz′, the current in this slice will be dI = NI dz′

H , which is simply
the number turns per length times the length dz′. Now the magnetic field becomes:

B(r) = Nµ0I

2RH

∫ H/2

−H/2

dz′

(1 + (z − z′)2/R2)
3
2

ẑ = Nµ0I

2H

∫ z−H/2
R

z+H/2
R

ds

(1 + s2)
3
2

ẑ = Nµ0I

2H

∫ θ2

θ1

sec2 θdθ(
1 + tan2 θ

) 3
2

ẑ

= Nµ0I

2H

(
H/2 − z√

R2 + (H/2 − z)2
+ H/2 + z√

R2 + (H/2 + z)2

)
ẑ. (9)
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Equation (9) accounts for the finite height of the coil, and expanding it around z = 0 gives the quadratic
term:

Nµ0I

2

(
48R2

(H2 + 4R2)5/2

)
z2, (10)

which goes like 1/H4 for large H1 . In other words, the magnetic field becomes pretty flat inside the solenoid
if H is large. Tall solenoids won’t apply a strong restoring force close to the middle point.

It is interesting to note that if one inserts a permanent magnet with moment M close to the center, it
will couple to this magnetic fields as ∝ −M · B ∝ z2, which will be simple harmonic oscillator.

C. Series expansion

The calculation of the magnetic field off the z axis is a bit much more involved.

The complete computation of the magnetic field will result in elliptical integrals[3]. The corresponding
inductance will also involve elliptical integrals. We will avoid the elliptic integrals for now by settling for the
an approximate solution. We have calculated the magnetic field on the central axis in Eq. (9), and that can
enable us to step off the axis. We can start from the Ampere’s law, Eq. (1) in the absence of sources:

∇ × B = 0. (11)

Since the curl of B is 0, from the fundamental theorem of vector calculus, we know that B can be written
as the gradient of a magnetic scalar potential:

B = −∇ψ. (12)

Furthermore, since there are no magnetic monopoles, B is also divergence free:

∇ · B = −∇2ψ = 0. (13)

We would like solve the Laplace’s equation in spherical coordinates as illustrated in Fig. 4.

1assuming we keep adding turns to keep N/H constant
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Figure 4: The spherical coordinates.

In the spherical coordinates, the Laplace equation reads:

∇2ψ =
[

1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂ϕ2

]
ψ. (14)

We can separate the variables as ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ):

ΘΦ
r2

d

dr

(
r2 dR

dr

)
+ RΦ
r2 sin θ

d

dθ

(
sin θdΘ

dθ

)
+ RΘ
r2 sin2 θ

∂2Φ
∂ϕ2 = 0, (15)

or equivalently
sin2 θ

R

d

dr

(
r2 dR

dr

)
+ sin θ

Θ
d

dθ

(
sin θdΘ

dθ

)
= − 1

Φ
∂2Φ
∂ϕ2 . (16)

Since the left-hand side of Eq. (16) depends on r and θ only, and the right one depends on ϕ only, overall
they can only be equal to a constant, which we will call m2. This separates out the Φ function. Furthermore,
since ϕ is the angle, the solutions have to be 2π periodic, which gives:

Φ(ϕ) = eimϕ. (17)

Putting this back in Eq. (16) and dividing the it by sin2 θ we get:

1
R

d

dr

(
r2 dR

dr

)
= − 1

sin θΘ
d

dθ

(
sin θdΘ

dθ

)
− m2

sin2 θ
. (18)

Similarly, since the left-hand side of Eq. (18) depends on r only, and the right one depends on θ only, overall
they can only be equal to a constant, which we will call c.

1) Radial dependence: The form of the solution for R(r) is easy to guess since the derivatives are balanced
by the powers of r, and therefore, a function of the form rl will preserve its form up to a coefficient.
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d

dr

(
r2 dr

l

dr

)
− crl = [l(l + 1) − c] rl = 0 =⇒ c = l(l + 1). (19)

However, notice the unexpected symmetry of l(l+ 1) under l → −l− 1. This means, if rl is a solution, so is
r−l−1. This suggests the following form of solution for R:

R(r) = alr
l + bl

rl+1 . (20)

2) Angular part: Putting this back in Eq. (18) yields

1
sin θ

d

dθ

(
sin θdΘ

dθ

)
+
[
l(l + 1) − m2

sin2 θ

]
Θ = 0. (21)

Now define cos θ = x, which gives d
dθ = dx

dθ
d

dx = − sin θ d
dx and insert this back in Eq.(21):

(1 − x2)d
2Θ
dx2 − 2xdΘ

dx
+
[
l(l + 1) − m2

1 − x2

]
Θ = 0. (22)

Let’s first attempt to solve this for m = 0 using power series expansion[4]:

Θ(x) =
∞∑

k=0
ckx

k. (23)

Inserting this back to Eq. (22) we get:

0 =
∞∑

k=0
ckx

k−2k(k − 1) −
∞∑

k=0
ckx

kk(k − 1) +
∞∑

k=0
ckx

k [l(l + 1) − 2k]

=
∞∑

k=2
ckx

k−2k(k − 1) −
∞∑

k=0
ckx

kk(k − 1) +
∞∑

k=0
ckx

k [l(l + 1) − 2k]

=
∞∑

k=0
ck+2x

k(k + 2)(k + 1) +
∞∑

k=0
ckx

k [l(l + 1) − k(k + 1)]

=
∞∑

k=0
{ck+2(k + 2)(k + 1) − ck [k(k + 1) − l(l + 1)]}xk. (24)

This implies

ck+2 = k(k + 1) − l(l + 1)
(k + 2)(k + 1) ck = (k − l)(l + k + 1)

(k + 2)(k + 1) ck, (25)

which is the recurrence equation for the expansion coefficients.
This is a remarkable equation since it has profound consequences. Earlier in this blog, we looked at the

Quantum Harmonic Oscillator and showed that for a similar series expansion to converge, we had to have
the energy quantized. In this particular problem, until this point, we have no indication of l being an integer.
But now, we see that it has to be an integer so that the series truncates for k > l (for every other k). That’s
the first observation.

The second observation is associated with the parity symmetry of the original differential Eq. (22), which
is invariant under x → −x upto the overall sign. This shows that the solutions will also be eigenstates of
the parity operator, i.e., odd and even k terms should not mix.

We have a couple of ways of terminating the series. The first one is what we have discussed above, i.e.,
settin l to an integer k∗, which will zero out every other ck. The ck’s, with k > l, not addressed by this
truncation need to be eliminated directly by their root coefficient, c0 or c1. To be more specific, take an
example l = 1. The ck’s with odd k quickly terminate after k = 1: c1, 0, · · ·. The even ones will keep growing:
c0, αc0, βαc0, · · ·. The only way to tame this series is by killing it at its root, i.e., by setting it a0 = 0 so that
all the even terms drop out. This shows that even odd powers of x will not mix preserving respecting the

tetraquark.netlify.app/post/quantum_hosc/index.html?src=coil_calcs
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parity symmetry of the original equation.
From Eq. (25), we can explicitly write the fist few Legendre polynomials:

P0(x) = 1,
P1(x) = x,

P2(x) = 1
2(3x2 − 1),

P3(x) = 1
2(5x3 − 3x),

P4(x) = 1
8(35x4 − 30x2 + 3). (26)

Having shown that Legendre polynomials solve the differential equation (with m = 0),

(1 − x2)d
2Pl

dx2 − 2xdPl

dx
+ l(l + 1)Pl = 0. (27)

We now need to address the full equation with m ̸= 0. The idea would be to differentiate m times to create
the m2 term. For this, we will need the Leibniz’s formula:

dm

dxm
[f(x)g(x)] =

n∑
k=0

(
n

k

)
dkf

dxk

dn−kg

dxn−k
(28)

Let’s dive into the differentiation:

0 = dm

dxm

[
(1 − x2)d

2Pl

dx2 − 2xdPl

dx
+ l(l + 1)Pl

]
= (1 − x2) d

m

dxm

d2Pl

dx2 +m
d

dx
(1 − x2) d

m−1

dxm−1
d2Pl

dx2 + m(m− 1)
2

d2

dx2 (1 − x2) d
m−2

dxm−2
d2Pl

dx2

−2x dm

dxm

dPl

dx
− 2m d

dx
(x) d

m−1

dxm−1
dPl

dx
+ l(l + 1) d

m

dxm
Pl

= (1 − x2)u′′ − 2mxu′ −m(m− 1)u− 2xu′ − 2mu+ l(l + 1)u
= (1 − x2)u′′ − 2(m+ 1)xu′ −m(m+ 1)u+ l(l + 1)u
= (1 − x2)u′′ − 2(m+ 1)xu′ − (l −m)(l +m+ 1)u, (29)

where u ≡ dmPl

dxm . We still need to modify the equation further so that it matches Eq.(22). First of all, we
note that the equation we want to get at was self-adjoint, and we kind of destroyed it as we acted with dm

dxm .
Let’s restore it and see where it takes us.

3) Sturm–Liouville theory: We are going to use some machinery from Sturm–Liouville theory on second
order differential equations. Consider the second order differential operator L[4]:

Lu =
(
p0(x) d

2

dx2 + p1(x) d
dx

+ p2(x)
)
u. (30)

We are going to define the inner product in the function space as an integral in a range [a, b].

⟨u|L|u⟩ ≡
∫ b

a

dxu(x)Lu(x) =
∫ b

a

dxu(x)
(
p0

d2

dx2 + p1
d

dx
+ p2

)
u =

∫ b

a

dx
(
p0uu

′′ + p1uu
′ + u2p2

)
. (31)

We can integrate Eq.(31) by parts. Let’s look at each term one by one:

up0u
′′ = u

d2

dx2 (p0u) − d

dx
(up′

0u) + 2up′
0u

′

up1u
′ = −u d

dx
(p1u) + d

dx
(up1u). (32)

Putting this back in Eq.(31) gives:
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⟨u|L|u⟩ = [u(p1 − p′
0)u]ba +

∫ b

a

dxu

(
d2

dx2 (p0u) − d

dx
(p1u) + p2u

)
= [u(p1 − p′

0)u]ba +
∫ b

a

dxuL̄u, (33)

where the adjoint operator L̄ is defined as:

L̄u = d2

dx2 (p0u) − d

dx
(p1u) + p2u. (34)

Although L̄u looks pretty different from Lu in Eq. (30), they can actually be the same if p1 = p′
0. Such L

operators are self-adjoint. Furthermore, note that the boundary term also drops out for self-adjoint operators.

The good news is that if an equation is not self adjoint, it can be converted into that form if it gets
multiplied by the following factor:

1
p0(x)exp

{∫ x

dt
p1(t)
p0(t)

}
. (35)

Let’s revisit Eq. (29) to find the factor that will make the equation self-adjoint:

1
1 − x2 exp

{
−
∫ x

dt
2(m+ 1)t

1 − t2

}
= 1

1 − x2 exp
{

(m+ 1)
∫ x d(1 − t2)

1 − t2

}
= (1 − x2)m. (36)

We will take this factor, multiply Eq. (29) with it to get:

d

dx

(
(1 − x2)m+1u′)− (l −m)(l +m+ 1)u = 0. (37)

Finally, we will want to absord half power of that coefficient into u by defining

v(x) = (1 − x2) m
2 u(x) ⇐⇒ u(x) = (1 − x2)− m

2 v(x), (38)

to get

u′ =
[
v′ + mvx

1 − x2

]
(1 − x2)− m

2 ,

u′′ =
[
v′′ + 2mv′x

1 − x2 + mx

1 − x2 + m(m+ 2)x2v

(1 − x2)2

]
(1 − x2)− m

2 . (39)

The new function v satisfies the following equation:

(1 − x2)d
2v

dx2 − 2xdv
dx

+
(
l(l + 1) − m2

1 − x2

)
v = 0, (40)

which is identical to Eq. (22). In conclusion, the angular part of the solution is given by the associated
Legendre polynomials as below:

Pm
l (x) = (1 − x2) m

2
dm

dxm
Pl(x). (41)

4) Full solution: Note that the highest power in Pl is l, and for m > l, we run out of x’s to differentiate.
This automatically limits |m| to l. Putting all pieces together, the full solution to the Laplace equation reads:

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) =
∞∑

l=0

l∑
m=−l

(
almr

l + blm

rl+1

)
Pm

l (cos θ)eimϕ. (42)
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In the case of symmetric coils, only m = 0 will contribute. Furthermore, for the solution inside the coil, we
need to set bl = 0 so that the solution stays finite:

ψ(r, θ, ϕ) =
∞∑

l=0
alr

lPl(cos θ). (43)

The magneto-static potential becomes a sum of Legendre polynomials[5]:

ψ(r, θ) = a0 + a1rP1(cos θ) + a2r
2P2(cos θ) + a3r

3P3(cos θ) + . . . . (44)

We can evaluate Eq. (44) on the z−axis, i.e., cos θ = 1 and r = z, to get:

ψ(z) = a0 + a1z + a2z
2 + a3z

3 + · · · , (45)

which should be a familiar form since it is also the Taylor expansion. The trick here is to calculate the
coefficients by matching the corresponding magnetic field with the expression we calculated earlier in Eq.
(9). We first need to calculate the vector potential from Eq. (9):

ψ(z) = −
∫ z

dz̃B(z̃) = −
∫ z

dz̃
Nµ0I

2H

(
H/2 − z̃√

R2 + (H/2 − z̃)2
+ H/2 + z̃√

R2 + (H/2 + z̃)2

)

= −Nµ0I

2H

(√
R2 + (H/2 + z̃)2 −

√
R2 + (H/2 − z̃)2

)
= − Nµ0I√

4R2 +H2
z + 8NR2µ0I

(4R2 +H2)5/2 z
3 + · · · .(46)

Comparing the expansion above with Eq. (45) we can read a0 = 0, a1 = − Nµ0I√
4R2+H2 , a2 = 0, and a3 =

8NR2µ0I
(4R2+H2)5/2 . Putting these back into Eq. (44) along with the Legendre polynomials from Eq. (26), we get 2:

ψ(r, θ) ≃ − Nµ0I√
4R2 +H2

cos θ r + 4NR2µ0I

(4R2 +H2)5/2 (5 cos3 θ − 3 cos θ) r3. (47)

Now we can use Eq.(12) to compute the components of the magnetic field:

Br = −∂ψ(r, θ)
∂r

≃ Nµ0I√
4R2 +H2

cos θ − 12NR2µ0I

(4R2 +H2)5/2 (5 cos3 θ − 3 cos θ) r2,

Bθ = −1
r

∂ψ(r, θ)
∂θ

≃ − Nµ0I√
4R2 +H2

sin θ − 12NR2µ0I

(4R2 +H2)5/2 (sin θ − 5 cos2 θ sin θ) r2. (48)

If we wanted to switch to cylindrical coordinates we can do that by rotating the vector:(
Bz

Bρ

)
=
[
cos θ − sin θ
sin θ cos θ

](
Br

Bθ

)
. (49)

D. Elliptic Integrals
We will now derive the expression for the magnetic field created by a thin solenoid. While we are here, it

will be instructive to solve this problem so that we first get the magnetic field for a compact coil. We can
then integrate to get the result for the solenoid. The magnetic field at an arbitrary point r is given by the
Biot-Savart law integrated over sources:

B(r) = µ0I

4πH

∫
c

dℓ′ × (r − r′)
(r − r′)3 . (50)

Equivalently, we can first compute the vector potential and then take its curl. In a generic representation,
the vector potential is expressed as follows[1]:

A(r) = µ0

4π

∫
d3r′ J(r′)

|r − r′|
, (51)

where J is the current density.
2My results differ from those of the ones in [5]- I believe they have an error in their Equation 10
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1) Single loop: Let’s take a closer look at the field at a generic point r created by a single loop, as
illustrated Fig. 5.

Figure 5: A single loop of current. We are now interested in the field at a generic point r.

For a single loop sitting at z = 0 with radius r = R, it is convenient to work in spherical coordinates.

Js(r′) = λδ(r′ −R)δ(cos θ′)φ̂′ = λδ(r′ −R)δ(cos θ′)
(

cosφ′ĵ − sinφ′̂i
)
, (52)

where λ is the current density. In order to calculate λ for a loop of wire carrying a current I, let’s intercept
the loop with an area perpendicular to it. We can do that by selecting an area on, say, positive x axis ( i.e.,
φ′ = 0), pointing along the y axis, i.e., dS′ = dS′ĵ = r′dr′dθ′ĵ. Integrating the current density on this area
we should get the total current:∫

S

dS′ · J(r) =
∫

S

r′dr′dθ′λδ(r′ −R)δ(cos θ′)̂j ·
(

cosφ′ĵ − sinφ′̂i
) ∣∣∣∣

φ′=0
= Rλ = I =⇒ λ = I/R.(53)

Therefore, the properly normalized current is

Js(r′) = I

R
δ(r′ −R)δ(z′ − zs)φ̂′ = I

R
δ(r′ −R)δ(cos θ′)

(
cosφ′ĵ − sinφ′̂i

)
. (54)

Before we continue the calculation for a generic observation point r, let me throw you a curve-ball. Consider
the vector potential on the z axis, i.e., r = z. In this case, |r − r′| across the integration as can be seen from
Fig. 5. Therefore the integration in Eq. (51) becomes: ∝

∫ 2π

0 dφφ̂′ = 0. So the vector potential vanishes on
the z axis. Since B = ∇ × A, the magnetic field should vanish too! But, we calculated the magnetic field on
the z axis in Eq. (8) and it is clearly non-zero. What went wrong? Here is the problem: if you are cooking
a function to take the derivative later, that function has to be defined in the vicinity of the points you will
take derivatives. More specifically, you can’t compute A on only the z axis and expect to be able to take
its curl since curl will by definition take its derivative stepping off of the z axis.
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The integral we have to deal with for a single loop is this:

As(r) = µ0

4π

∫
d3r′ J(r′)

|r − r′|
= µ0I

4πR

∫
d3r′ 1

|r − r′|
δ(r′ −R)δ(cos θ′)

(
cosφ′ĵ − sinφ′̂i

)
, (55)

where we put the subscript s to remind us that this is for a single loop. We will parameterize the points
on the loop centered at z = 0 as r′ = r′(cosφ′̂i + sinφ′ĵ), and the observation point as r = r cos θẑ +
r sin θ(cosφî + sinφĵ)

|r − r′| =
√
r2 cos2 θ + (r sin θ cosφ− r′ cosφ′)2 + (r sin θ sinφ− r′ sinφ′)2

=
√
r2 + r′2 − 2rr′ sin θ cos(φ′ − φ). (56)

Note that the problem has rotational symmetry. We can rotate our coordinate system such that the
observation point sits on y = 0, i.e., φ = 0. Once we are done with the computations, we can rotate
the vectors back to general r point. So let’s set φ = 0 in Eq. (56) and rewrite Eq. (55) :

As(r) = µ0I

4πR

∫
sin θ′r′2dr′dφ′ 1√

r2 + r′2 − 2rr′ sin θ cos(φ′ − φ)
δ(r′ −R)δ(cos θ′)

(
cosφ′ĵ − sinφ′̂i

)

= µ0IR

4π

∫ 2π

0
dφ′ cosφ′ĵ√

r2 +R2 − 2rR sin θ cos(φ′ − φ)
−

����������������������:0

µ0IR

4π

∫ 2π

0
dφ′ sinφ′̂i√

r2 +R2 − 2rR sin θ cos(φ′ − φ)
,(57)

where the second term vanishes since the integrand is odd and the integral is evaluated over the full range.
Note that we evaluated the integral at φ = 0, and the resulting potential points in ĵ direction. For generic φ
we can simply rotate the coordinate system about the z axis by φ. In this rotated coordinate system ĵ → φ̂.
Therefore the vector potential reads:

As(r) = φ̂
µ0IR

4π

∫ 2π

0
dφ′ cosφ′√

r2 +R2 − 2rR sin θ cosφ′
. (58)

Let’s define ϕ′ = π − φ′ to get cosφ′ = − cosϕ′ and rewrite Eq. (58) as:

As(r) = −φ̂µ0IR

4π

∫ π

−π

dϕ′ cosϕ′√
r2 +R2 + 2rR sin θ cosϕ′

. (59)

Let’s also use the half angle formula: cosϕ′ = 1 − 2 sin2 ϕ′

2 and reorganize the integral:

As(r) = −φ̂µ0IR

4π
1√

r2 +R2 + 2rR sin θ

∫ π

−π

dϕ′ 1 − 2 sin2 ϕ′

2√
1 − 4rR sin θ

r2+R2+2rR sin θ sin2 ϕ′

2

≡ −φ̂µ0IR

4π
1√

r2 +R2 + 2rR sin θ

∫ π

−π

dϕ′ 1 − 2 sin2 ϕ′

2√
1 − k2 sin2 ϕ′

2

= −φ̂µ0IR

4π
1√

r2 +R2 + 2rR sin θ

∫ π

−π

dϕ′

 1√
1 − k2 sin2 ϕ′

2

− 2
sin2 ϕ′

2√
1 − k2 sin2 ϕ′

2


= −φ̂µ0IR

4π
1√

r2 +R2 + 2rR sin θ

∫ π

−π

dϕ′

 1√
1 − k2 sin2 ϕ′

2

− 2
k2

 1√
1 − k2 sin2 ϕ′

2

−
√

1 − k2 sin2 ϕ
′

2


= −φ̂µ0IR

4π
1

k2
√
r2 +R2 + 2rR sin θ

∫ π

−π

dϕ′

 k2 − 2√
1 − k2 sin2 ϕ′

2

+ 2
√

1 − k2 sin2 ϕ
′

2

 , (60)

where k2 = 4rR sin θ
r2+R2+2rR sin θ . Finally, we define ζ ′ = ϕ′/2 and split the integration into two pieces to pick an
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overall factor of 4 to get:

As(r) = φ̂
µ0IR

π
√
r2 +R2 + 2rR sin θ

(2 − k2)K(k2) − 2E(k2)
k2 , (61)

where the elliptic integral are defined as follows:

K(k2) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

,

E(k2) =
∫ π

2

0
dθ
√

1 − k2 sin2 θ. (62)

The calculation of the magnetic field is straightforward[6]:

Br = 1
r sin θ

∂

∂θ
(sin θAφ) = µ0IR

2

π
√
r2 +R2 + 2rR sin θ(r2 +R2 − 2rR sin θ)

cos θE(k2),

Bθ = −1
r

∂

∂r
(rAφ) = µ0I

2π
√
r2 +R2 + 2rR sin θ(r2 +R2 − 2rR sin θ) sin θ

[
(r2 +R2 cos(2θ))E(k2) − (r2 +R2 − 2rR sin θ)K(k2)

]
.(63)

We can also express the magnetic field in the cylindrical coordinates [6]:

Bρ = µ0Iz

2π
√
R2 + ρ2 + z2 + 2Rρ(R2 + ρ2 + z2 − 2Rρ)ρ

[
(R2 + ρ2 + z2)E(k2) − (R2 + ρ2 + z2 − 2Rρ))K(k2)

]
,

Bz = µ0I

2π
√
R2 + ρ2 + z2 + 2R(R2 + ρ2 + z2 − 2Rρ)ρ

[
(R2 − ρ2 − z2)E(k2) + (R2 + ρ2 + z2 − 2Rρ))K(k2)

]
.(64)

2) Solenoid: Now we need to stack up many single loops and integrate the fields[7]. We choose the
cylindrical coordinate system and highlight one of these loops centered at zs in Fig. 6.
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Figure 6: A loop sitting at z = zs. We will integrate over these loops along the z direction from −L/2 to
L/2.

For the solenoid of H centered at z = 0, the current on the wires at r′ = R and − H
2 < z < H

2 , we can
express it as follows:

Js(r′) = λδ(r′ −R)φ̂′ = λδ(r′ −R)
(

cosφ′ĵ − sinφ′̂i
)
, for − H

2 < z <
H

2 , (65)

where λ is the current density. In order to calculate λ for a loop of wire carrying a current I, let’s intercept the
loop with an area perpendicular to it. The surface is a thin rectangle just around r′ = R and − H

2 < z < H
2 .

We can still select an area on positive x axis ( i.e., φ′ = 0), pointing along the y axis, i.e., dS′ = dS′ĵ = dr′H ĵ.
Integrating the current density on this area we should get the total current:∫

S

dS′ · J(r) =
∫

S

dr′Hλδ(r′ −R)̂j ·
(

cosφ′ĵ − sinφ′̂i
) ∣∣∣∣

φ′=0
= λH = NI =⇒ λ = NI

H
, (66)

where N is the total number of turns in the coil. Therefore, the properly normalized current is

Js(r′) = NI

H
δ(r′ −R)φ̂′ = nIδ(r′ −R)

(
cosφ′ĵ − sinφ′̂i

)
, (67)

where n = N
H is the number of turns per unit length. The integral we have to deal with for the coils reads:

A(r) = µ0

4π

∫
d3r′ J(r′)

|r − r′|
= µ0nI

4π

∫ H
2

− H
2

dz′r′dr′dφ′ 1
|r − r′|

δ(r′ −R)
(

cosφ′ĵ − sinφ′̂i
)
, (68)

where we put the subscript s to remind us that this is for a single loop. We will parameterize the points on the
loop centered at z = z′ as r′ = z′ k+r′(cosφ′̂i+sinφ′ĵ), and the observation point as r = z+r(cosφî+sinφĵ)

|r − r′| = |z + r(cosφî + sinφĵ) − z′ k − r′(cosφ′̂i + sinφ′ĵ)| =
√

(z − z′)2 + r2 + r′2 − 2rr′ cos(φ− φ′). (69)
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Note that the problem has rotational symmetry. We can rotate our coordinate system such that the
observation point sits on y = 0, i.e., φ = 0. Once we are done with the computations, we can rotate
the vectors back to general r point. So let’s set φ = 0 in Eq. (56) and rewrite Eq. (55) :

A(r) = µ0n

4π

∫
r′dr′dz′dφ′ 1√

(z − z′)2 + r2 + r′2 − 2rr′ cosφ′
δ(r′ −R)

(
cosφ′ĵ − sinφ′̂i

)

= µ0nR

4π

∫ H
2

− H
2

dz′
∫ 2π

0
dφ′ cosφ′ĵ√

(z − z′)2 + r2 +R2 − 2rR cosφ′
− µ0nR

4π

∫ H
2

− H
2

dz′

��������������������:0∫ 2π

0
dφ′ sinφ′̂i√

(z − z′)2 + r2 +R2 − 2rR cosφ′
,(70)

where the second term vanishes since the integrand is odd and the integral is evaluated over the full range.
Note that we evaluated the integral at φ = 0, and the resulting potential points in ĵ direction. For generic φ
we can simply rotate the coordinate system about the z axis by φ. In this rotated coordinate system ĵ → φ̂.
Therefore the vector potential reads:

A(r) = φ̂
µ0nR

2π

∫ π

0
dφ′

∫ H
2

− H
2

dz′ cosφ′√
(z′ − z)2 + r2 +R2 − 2rR cosφ′

, . (71)

where the integrand periodic and the range can be set to [0, π] by inserting an overall factor of 2. We will
want to do the the z′ integral first by changing the variable as z′ − z ≡

√
r2 +R2 − 2rR cosφ′ tanα:

I =
∫
dz′ 1√

(z′ − z)2 + r2 +R2 − 2rR cosφ′
=
∫
dα
√
r2 +R2 − 2rR cosφ′ sec2 α

1√
r2 +R2 − 2rR cosφ′

√
tan2 θ + 1

=
∫
dα secα =

∫
dα secα secα+ tanα

secα+ tanα =
∫
dα

sec2 α+ tanα secα
secα+ tanα =

∫
d(secα+ secα)

secα+ tanα = ln | secα+ tanα|

= ln

∣∣∣∣∣z′ − z +
√

(z′ − z)2 + r2 +R2 − 2rR cosφ′√
r2 +R2 − 2rR cosφ′

∣∣∣∣∣
= ln

∣∣∣z′ − z +
√

(z′ − z)2 + r2 +R2 − 2rR cosφ′
∣∣∣− ln

∣∣∣√r2 +R2 − 2rR cosφ′
∣∣∣ (72)

where we can drop the last term since it has no z dependence and its values at the upper and lower boundary
is the same. Let’s define z′ − z = ξ, ξ± = z ± H

2 and go back to the φ′ integral:

A(r) = φ̂
µ0nR

2π

∫ π

0
dφ′ cosφ′ ln

∣∣∣ξ +
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣ξ+

ξ−

= φ̂
µ0nR

2π

∫ π

0
d

{
sinφ′ ln

∣∣∣ξ +
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣ξ+

ξ−

}
−φ̂µ0nR

2π

∫ π

0
dφ′ sinφ′ d

dφ′

{
ln
∣∣∣ξ +

√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣ξ+

ξ−

}

= φ̂
µ0nR

2π

�����������������������:0{
sinφ′ ln

∣∣∣ξ +
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣ξ+

ξ−

}∣∣∣∣π
0

−φ̂µ0nR

2π

∫ π

0
dφ′ rR sin2 φ′(

ξ +
√
ξ2 + r2 +R2 − 2rR cosφ′

)√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣∣
ξ+

ξ−

= −φ̂µ0nR

2π

∫ π

0
dφ′ rR sin2 φ′(

ξ +
√
ξ2 + r2 +R2 − 2rR cosφ′

)√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣∣
ξ+

ξ−

. (73)



15

Multiply and divide by
√
ξ2 + r2 +R2 − 2rR cosφ′ − ξ [7] to get:

A(r) = −φ̂µ0nIR

2π

∫ π

0
dφ′ (

√
ξ2 + r2 +R2 − 2rR cosφ′ − ξ)rR sin2 φ′

(ξ2 + r2 +R2 − 2rR cosφ′ − ξ2)
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣
ξ+

ξ−

= −φ̂µ0nIR

2π

∫ π

0
dφ′ (

√
ξ2 + r2 +R2 − 2rR cosφ′ − ξ)rR sin2 φ′

(r2 +R2 − 2rR cosφ′)
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣
ξ+

ξ−

= −φ̂µ0nIR

2π

∫ π

0
dφ′


�������������:0

rR sin2 φ′

(r2 +R2 − 2rR cosφ′)

∣∣∣∣ξ+

ξ−

− ξrR sin2 φ′

(r2 +R2 − 2rR cosφ′)
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣
ξ+

ξ−


= φ̂

µ0nIR
2r

2π

∫ π

0
dφ′ ξ sin2 φ′

(r2 +R2 − 2rR cosφ′)
√
ξ2 + r2 +R2 − 2rR cosφ′

∣∣∣∣∣
ξ+

ξ−

, (74)

where the first term vanishes since it has no ξ dependence. As we did in the Single loop section, Let’s define
ϕ′ = π−φ′ to get cosφ′ = − cosϕ′. This will change the integral limits from [0, π] to [π, 0] and the measure
from dφ to −dϕ. We can flip the integral limits with the negative sign of the measure to get:

A(r) = φ̂
µ0nIR

2r

2π

∫ π

0
dϕ′ ξ sin2 ϕ′

(r2 +R2 + 2rR cosϕ′)
√
ξ2 + r2 +R2 + 2rR cosϕ′

∣∣∣∣∣
ξ+

ξ−

. (75)

we define ζ ′ = ϕ′

2 . Noting

sin2 ϕ′ = sin2(2ζ ′) = [2 sin ζ ′ cos ζ ′]2 = 4 sin2 ζ ′ cos2 ζ ′ = 4 sin2 ζ ′ − 4 sin4 ζ ′, (76)

we get:

A(r) = φ̂
µ0nIR

2r

π

∫ π/2

0
dζ ′ 4 sin2 ζ ′ − 4 sin4 ζ ′

(r2 +R2 + 2rR cos(2ζ ′))
√
ξ2 + r2 +R2 + 2rR cos(2ζ ′)

ξ

∣∣∣∣∣
ξ+

ξ−

= φ̂
4µ0nIR

2r

π

∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′

(r2 +R2 + 2rR cos(2ζ ′))
√
ξ2 + r2 +R2 + 2rR cos(2ζ ′)

ξ

∣∣∣∣∣
ξ+

ξ−

= φ̂
4µ0nIR

2r

π

∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′

(r2 +R2 + 2rR cos(2ζ ′))
√
ξ2 + r2 +R2 + 2rR cos(2ζ ′)

ξ

∣∣∣∣∣
ξ+

ξ−

= φ̂
4µ0nIR

2r

π

∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′(

(r +R)2 − 4rR sin2 ζ ′
)√

ξ2 + (r +R)2 − 4rR sin2 ζ ′
ξ

∣∣∣∣∣
ξ+

ξ−

= φ̂
4µ0nIR

2r

π(r +R)2
√
ξ2 + (r +R)2

∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′(

1 − 4rR
(r+R)2 sin2 ζ ′

)√
1 − 4rR

ξ2+(r+R)2 sin2 ζ ′
ξ

∣∣∣∣∣∣
ξ+

ξ−

= φ̂
4µ0nIR

2r

π(r +R)2
√
ξ2 + (r +R)2

∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′(

1 − h2 sin2 ζ ′
)√

1 − k2 sin2 ζ ′
ξ

∣∣∣∣∣
ξ+

ξ−

. (77)

where h2 ≡ 4rR
(r+R)2 and k2 ≡ 4rR

ξ2+(r+R)2 .

We can do partial fractions:
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I =
∫ π/2

0
dζ ′ sin2 ζ ′ − sin4 ζ ′(

1 − h2 sin2 ζ ′
)√

1 − k2 sin2 ζ ′

=
∫ π/2

0
dζ ′

{
1
h2

[
1

(1 − h2 sin2 ζ ′)
√

1 − k2 sin2 ζ ′
− 1√

1 − k2 sin2 ζ ′

]
+ 1
h4

[
1 + h2 sin2 ζ ′√
1 − k2 sin2 ζ ′

− 1
(1 − h2 sin2 ζ ′)

√
1 − k2 sin2 ζ ′

]}

= k2 + h2 − h2k2

h2k2 K(k2) − 1
k2E(k2) − h2 − 1

h2 Π(h2, k2), (78)

where

K(k2) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

,

E(k2) =
∫ π

2

0
dθ
√

1 − k2 sin2 θ,

Π(h2, k2) =
∫ π

2

0

dθ

(1 − h2 sin2 θ)
√

1 − k2 sin2 θ
. (79)

Putting it all together, we get:

A(r) = φ̂
µ0nI

√
R

2π
√
r

[
k2 + h2 − h2k2

h2k2 K(k2) − 1
k2E(k2) − 1 − h2

h2 Π(h2, k2)
]
ξk

∣∣∣∣∣
ξ+

ξ−

. (80)

We can now compute the magnetic field. This will require derivatives of the elliptic integrals[8]:

dK

dk
= E

k(1 − k2) − K

k
,

dE

dk
= E

k
− K

k
,

dΠ
dk

= kΠ
k2 − h2 − kK

(1 − k2)(h2 − k2) . (81)

Finally we have[9]:

Br = −∂zA(r)φ = µ0nI

π

√
R

r

[
k2 − 2
k

K(k2) + 2
k
E(k2)

]
ξk

∣∣∣∣∣
ξ+

ξ−

, (82)

and,

Bz = 1
r
∂r (rA(r)φ) = µ0nI

4rπ
√
Rr

[
K(k2) + R− r

R+ r
Π(h2, k2)

]
ξk

∣∣∣∣ξ+

ξ−

. (83)

II. Resistance

For example, we cannot independently change the number of turns in a coil without changing its total
resistance and inductance. Similarly, changing the coil dimensions will change the inductance. We need to
choose the independent parameters and calculate everything else. From practical perspective, what we need
to do is to pick up a wire type from Tab. ??, specified by its AWG number, select a coil holder, specified
by its diameter and height. We then wind N turns as compactly as we can[10]. Once we do this, Lc and Rc

will be completely determined from first principles. Therefore the free parameters to optimize are the coil
height, wire type and the number of turns. The initial position of the the magnet is the last parameter we
can tune to optimize the performance.
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Consider a coil with N turns wound from radius ri to ro. The resistance of such a coil can be calculated
as:

R = N

ro − ri

∫ ro

ri

λ2πrdr = 2πNλ
ro − ri

r2

2

∣∣∣∣ro

ri

= 2πNλ
ro − ri

r2
o − r2

i
2 = 2πNλ

ro − ri

(ro − ri)(ro + ri)
2

= 2πNλro + ri

2 , (84)

where λ is the resistance per unit length. Also note that ro is not really a free parameter. It will be fixed for
a given wire type. A coil of height H will have a total area of H×(ro −ri) to fit in N turns of wire. Assuming
a packing density γ, and a cross-sectional area Aw for the wire, we can write the following relation:

H × (ro − ri)
Aw

γ = N (85)

Solving for ro, and putting it back in Eq. (84) gives:

R = 2πNλ
(
ri + NAw

2γH

)
. (86)

The second term accounts for the fact that the radius of the coil will increase as more turns are added,
and each turn will get longer and contribute more to the resistance. This shows us that adding more turns
adds increasingly more resistance limiting the peak current. On the flip side, more turns will result in more
magnetic field at the same current. Another metric we need to consider is the time it takes to reach to the
peak current, which can be shown to be ∝ 1√

L
∝ 1

N . Therefore, a coil with more turns will take longer to
saturate. We will dive deeper into these to see if there is an optimal solution for the value of N .

Table ?? is convenient for looking up a specific AWG number and locate the properties.

There is a formulation that can give us the same information with a fit function for the wire diameter:

Dw = 0.127 exp
(

36 − AWG
8.624889

)
. (87)

The resistivity per unit length can also be written as:

λw = ρ

πD2
w/4

, (88)

where ρ is the copper resistivity in the units of Ωm with a typical value of 1.75×10−8Ωm. It is also important
to note that the wire diameters are for the bare copper. The thickness of the insulation should be included
in winding calculations. A vendor provides the heavy insulation thickness table for various AWG values. It
is rather convenient to work with a formula for the insulation thickness rather than the raw numbers, and
their raw data can be conveniently fit with a linear regression:

Additional Radius from Insulation[mm] = 0.0676 − 0.0014 × AWG, (89)

The results are shown in Fig. 7.

https://wire-cable-tubing.wireandcable.com/viewitems/magnet-wire/heavy-polyimide-insulated-round-magnet-wire
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Figure 7: We take insulation data from [a vendor](https://wire-cable-
tubing.wireandcable.com/viewitems/magnet-wire/heavy-polyimide-insulated-round-magnet-wire). They
provide the heavy insulation thickness table for various AWG values. Their raw data can be conveniently
fit with a linear regression.

III. Inductance
However, there are certain empirical formulas that approximate the inductance values for a reasonable

range of geometrical parameters. The expression for the inductance for the long coil limit, see Eq. (4), can
be amended to get the Wheeler’s formula[11]:

Lc = 31.6N2r2
a

6ra + 9H + 10(ro − ri)
, (90)

where ra = ro+ri
2 is the average value of the radius. There are online calculators, such as this one which uses

the Wheeler’s formula. There are also calculators using the full blown elliptical integrals, such as Coil32[12].
They don’t necessarily give the same answer. Wheeler’s formula is convenient for computational reasons,
however its is expected to be accurate only when the coil thickness is similar to the coil height. We need to
investigate this a bit further and compare the predicted values against measured values.
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