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An introduction to conformal maps

Abstract
A gentle introduction to conformal maps.

Index Terms
Integral, Statistics

A conformal map locally preserves angles between directed curves through as well as the orientation.
In two dimensions, orientation-preserving conformal maps are locally invertible complex analytic functions,
as we will discuss below. Our motivation here is to build the machinery to solve electrostatic and fluid
flow problems. We will start from scratch and build towards fancy mappings to translate bizarre geometric
boundaries to manageable ones.

I. Defining the complex derivative
Consider a function f defined on the complex plane as f(z) with z = x+ iy. The derivative of a function

is defined by perturbing its argument by a small amount and computing the change in the function. In the
case of complex variables, we can move z to z + ∆z, as illustrated in Fig. 1.
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Figure 1: The position z in the complex plane is perturbed to a nearby point given by z + ∆z.

The complex derivative is defined just like in the case of familiar derivative:
df(z)
dz

≡ lim
∆z→0

f(z + ∆z) − f(z)
∆z . (1)

However, note that we are free to perturb the point as we wish. We can move it only vertically, that is
∆z = i∆y, or only horizontally , ∆z = ∆x, or with any combination of these two. We require that the
derivative is the same no matter how we move the point, and that is a strong requirement! In order to
simplify the notation, let us split f(z) into its real and imaginary parts:

f(z) ≡ u(x, y) + iv(x, y). (2)

Let us first calculate the derivative when we move the point horizontally: ∆y = 0 and ∆z = ∆x:
df(z)
dz

= lim
∆x→0

f(z + ∆x) − f(z)
∆x = lim

∆x→0

u(x+ ∆x, y) + iv(x+ ∆x, y) − u(x, y) − iv(x, y)
∆x = ∂u

∂x
+ i

∂v

∂x
.

(3)
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Secondly, we move the point vertically: ∆x = 0 and ∆z = i∆y:
df(z)
dz

= lim
∆y→0

f(z + i∆y) − f(z)
i∆y = lim

∆y→0

u(x, y + ∆y) + iv(x, y + ∆y) − u(x, y) − iv(x, y)
i∆y = −i∂u

∂y
+ ∂v

∂y
.

(4)
We want the results in Eqs. (3) and (4) to be the same which requires:

∂u

∂x
= ∂v

∂y
and ∂u

∂y
= −∂v

∂x
. (5)

Equations in (5) is known as Cauchy-Riemann equations, named after A. L. Cauchy who discovered them
and G. F. B. Riemann who made them fundamental in the theory of functions of complex variables. Now
take ∂x of the first line and ∂y of the second line to add them up together:

∂2u

∂x2 + ∂2u

∂y2 = 0 (6)

Similarly, take ∂y of the first line and −∂x of the second line to add them up together:

∂2v

∂x2 + ∂2v

∂y2 = 0. (7)

In a shorter notation, we can write

∇2u = 0 and ∇2v = 0, (8)

which is known as Laplace’s equation where ∇2 = ∂2
x + ∂2

y .

A. Orthogonality
Let’s look at the equations in (5) from a different perspective.The gradients of u and v can be written in

the vectorial for as (ux, uy) and (vx, vy), respectively. Now take the inner product of the gradients:

(ux, uy)T · (vx, vy) = uxvx + uyvy = ux(−uy) + uyux = 0, (9)

which shows that the gradients are orthogonal to each other. If their gradients are perpendicular so are their
tangents, see the proof below.

Let’s prove that gradient vector is indeed perpendicular to the tangent. In a generic case, f can be a
function of multiple variables: f = f(x1, x2, · · · , xn) where x = (x1, x2, · · · , xn) is an n dimensional vector.
The level surface of this function is composed of x values such that f(x0) = k, which defines an n − 1
dimensional level surface. What we want to prove is that for any point on the level surface, f(x0) = k, the
gradient of f , i.e., ∇f |x0 is perpendicular to the surface.

Let us take an arbitrary curve on this surface, x(t), parameterized by a parameter t, and assume it passes
through x0 at t = t0. On the surface f(x(t)) = f (x1(t), x2(t), · · · , xn(t)) = k. Let’s take the parametric
derivative of f and apply the chain rule.

df

dt
= 0 =

n∑
i=1

∂f

∂xi

∣∣∣∣
x0

dxi

dt

∣∣∣∣
t0

= ∇f |x0
· ẋ|t0 , (10)

where we defined ẋ|t0 = dx(t)
dt

∣∣∣
t0

, which is nothing but the tangent line. Therefore we conclude that the
gradient is perpendicular to the tangent lines on the surface.

This means that if we associate u(x, y) with an electric potential V (x, y), then the lines of constant v(x, y)
are perpendicular to the u(x, y). This implies that v(x, y) equipotentials are the field lines of u(x, y). But
note the symmetry between u and v: how do we decide which one is the potential and which one is the field
lines? We decide on that by looking at the symmetry of the problem and the boundary conditions. More on
this later.
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II. Conformal mapping

Consider two curves ξ and γ. We will assume that they intersect at a point z0 as in Fig. 2.

γ

ξ α
z0

β

Γ

β̃Ξ

α̃

f(z0)

f

Figure 2: The position z in the complex plane is perturbed to a nearby point given by z + ∆z.

Let us first concentrate on the curve ξ and assume it is parameterized as z(t) with a parameter t. This
curve gets mapped by the function f onto the curve Ξ:

Ξ(t) = f(z(t)). (11)

We want to investigate the angle measured from the horizontal axis at the intersection point z0 = z(t0). To
this end, let’s compute the derivative with respect to the parameter t:

Ξ′(t0) = f ′ (z(t0)) z′(t0). (12)

We can look at the angle by taking the argument of Eq. (12):

arg Ξ′(t0) = arg f ′ (z(t0)) + arg z′(t0). (13)

arg f ′ (z(t0)) is intrinsic to the mapping function f . Let’s define this angle as ζ. arg z′(t0) is the angle of the
tangent line, and in Fig. 2, we denoted that angle as α. We also denoted arg Ξ′(t0) as α̃. We can rewrite Eq.
(13) in these angles as:

α̃ = ζ + α. (14)

We can rinse and repeat the same exercise for the curve γ and its image Γ to get:

β̃ = ζ + β. (15)

The profound observation here is that in Eqs. (14) and (15) we have the very same offset ζ, which corresponds
to the angle associated with the the mapping f at z0. However, remember in the first section that the
derivative in the complex plane is defined such that it is independent of how you approach z0. That is
exactly why we get the same angle form the function f whether we evaluate it along the direction of ξ or
γ. If we take the difference of Eqs. (14) and (15) we get:

α̃− β̃ = α− β, (16)

which shows that the angle between the curves is preserved under such mappings.
A simple z → z2 mapping is conformal and it is illustrated in Fig. 3.
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Figure 3: The mapping of the color coded Cartesian grid with function z2. Note how the grid lines curve
and bend while preserving the angles at the intersection points.

III. Mapping harmonic functions

Consider a harmonic function φ(x, y) which satisfies

∂2φ

∂x2 + ∂2φ

∂y2 = 0. (17)

Assume we do a mapping from the complex variable z = x + i y with a function f such that f(z) =
u(x, y) + i v(x, y). We want to describe how Eq. (17) will look like in the new coordinates (u, v). We will
assume that f(z) is analytic, i.e., it satisfies the Cauchy-Rieman conditions in Eq. (5), and furthermore we
will assume |f ′(z)| ≠ 0 in the domain of interest. Assuming a 1-1 mapping from (x, y) to (u, v), we can in
principle find the inverse transformation, f−1 such that x and y can be expressed as functions of u and v:
x = x(u, v) and y = y(u, v). In other words φ can be expressed as a function of independent u and v. It will
look like this:

φ(x, y) = φ (x(u, v), y(u, v)) ≡ ϕ(u, v). (18)

We want to understand what kind of equation ϕ(u, v) could satisfy given all the assumptions above. Let’s
shut up and calculate:

φx = ϕuux + ϕvvx, (19)
φxx = ϕuuxx + ϕvvxx + (ϕuuux + ϕuvvx)ux + (ϕvuux + ϕvvvx)vx,

φy = ϕuuy + ϕvvy,

φyy = ϕuuyy + ϕvvyy + (ϕuuuy + ϕuvvy)uy + (ϕvuuy + ϕvvvy)vy,

from which we get:

φxx + φyy = ϕuu

(
u2

x + u2
y

)
+ ϕvv

(
v2

x + v2
y

)
+ ϕu������:0

(uxx + uyy) + ϕv������:0
(vxx + vyy) + 2ϕuv�������:0

(uxvx + uyvy)
= (ϕuu + ϕvv)

(
u2

x + v2
x

)
= (ϕuu + ϕvv)|f ′(z)|2 = 0 =⇒ ϕuu + ϕvv = 0. (20)

This is very important: harmonic functions are mapped to harmonic functions when the mapping function
is analytical with a non-vanishing derivative.
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IV. Complex potential

Let’s define the following analytical function:

Φ(z) = ϕ+ iψ, (21)

where ϕ and ψ are assumed to be analytical. As we have seen in Sec. Orthogonality, gradients of ϕ and ψ
are perpendicular to each other:

(ϕx, ϕy)T · (ψx, ψy) = 0, (22)

which means the level lines are perpendicular too. We also define a vector quantity F as the gradient of ϕ:

F = ∇⃗ϕ = (ϕx, ϕy). (23)

The object F⃗ is divergence and curl free:

∇⃗ × F = ϕyx − ϕxy = 0,
∇⃗ · F = ϕxx + ϕyy = 0. (24)

This makes F⃗ a compatible vector field for incompressible and irrotational flows and electrostatic problems.

A. Electrostatic problems

Let’s start with a very gentle problem. Consider an infinite line of charge along the vertical axis as
illustrated in Fig. 4.
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r

Figure 4: A segment of infinite line charge of density λ that lies along the z-axis. We put a hypotetical
cylinder of height h and radius r, co-centric with the line charge.

This is a text-book example for the application of the Gauss law to compute the electric field and the
electrostatic potential. We will repeat this exercise at the context of complex functions. We start from the
Gauss law:

∇ · E = ρ

ε0
. (25)
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Integrating this equation over the volume of the cylinder, we get:∫
V
d3x∇ · E =

∫
∂V
dS⃗ · E =

∫
∂V
rdϕdzr̂ · r̂E(r) = 2πrhE(r)

= 1
ε0

∫
V
d3xρ = Qenc

ε0
= hλ

ε0
, (26)

from which we get:

E(r) = λ

2πε0 r
. (27)

The corresponding electrostatic potential reads:

V (r) = −
∫ r

r0

dr⃗′ · E⃗(r′) = − λ

2πε0
ln

(
r

r0

)
. (28)

We can actually drop ln(r0) term as it is a constant and simplify the potential to:

V (r) = − λ

2πε0
ln (r) . (29)

The corresponding electric field is the negative gradient of V (r):

E⃗(r) = −∇⃗V (r) = λ

2πε0r
r̂. (30)

We can equivalently solve this directly from the Poisson equation in the cylindrical coordinates, and we
looked into that problem in an earlier post.

The two-dimensional view of the potential and the electric-field is shown in Fig. 5.

https://tetraquark.netlify.app/post/greens_function_radial_cylindrical?src=conformalmap
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Figure 5: The radial electric fields and the co-centric equipotential lines.

The electric fields are in radial direction, and they are perpendicular to the equipotential lines. We want to
resolve the problem in the context of complex variables using a conformal map. We want to find the function
φ(x, y) which satisfies Eq. (17). This requires solving the Laplace equation in cylindrical coordinates as we
just did. However, even without solving the problem, due to the symmetry, we know the electric potential
lines have to be circles and the electric fields have to be the radial lines. We want to map the circles and
rays into a simpler view in the mapped space. The circles in the complex plane are represented by z = reiθ.
As it has a built-in exponential, intuitively we can see that we can undo that if we tried f(z) = ln(z) as the
mapping function.

f(z) = ln(z) = ln(r) + iθ ≡ ϕ+ iψ. (31)

This maps (x, y) to (u, v). Furthermore the harmonic feature of φ with respect to (x, y) is still valid for ϕ
with respect to (u, v).
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Figure 6 shows that circles on the right are mapped to vertical lines in the (u, v) space.

ℑ(z)

ℜ(z)

v = ℑ (f(z))

u = ℜ (f(z))

π

f(z) = ln(z)

f−1(z) = ez

Figure 6: The mapping with the function ln(z) and its invers ez.

The Laplace equation in the (u, v) space couldn’t be any easier:

(∂2
u + ∂2

v)ϕ = 0. (32)

We can impose the boundary conditions at the red (u = 0) curve and at the blue curves u ≡ 1 with ϕ(0) ≡ 0
and ϕ(u = 1) = ϕ1. With these boundary conditions we get:

ϕ(u) = ϕ1u. (33)

Finally, we revert u to (r, θ) coordinates using Eq. (31): u = ln(r), which implies

φ(r) = ϕ1 ln(r). (34)
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