
Dirac particle in magnetic field

2023-11-18

Abstract
Energy levels of a relativistic fermion in magnetic field.
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In the natural units, ℏ = c = k = 1, the Dirac equation in the presence of the vector potential reads(
m σ⃗ · π⃗

σ⃗ · π⃗ −m

) (
χ
ϕ

)
= E

(
χ
ϕ

)
, (1)

where π⃗ = P⃗ − qA⃗ . Multiplying the matrices we have two equations:

mχ + σ⃗ · π⃗ϕ = Eχ, and σ⃗ · π⃗χ − mϕ = Eϕ. (2)

From the second equation we get ϕ = σ⃗·π⃗χ
E+m . Plugging this back into the first one we get the equation for χ:

(E2 − m2)χ = (σ⃗ · π⃗)2
χ. (3)

We will use the identity
σ⃗ · A⃗σ⃗ · B⃗ = IA⃗ · B⃗ + i(A⃗ × B⃗) · σ⃗. (4)

For our case A⃗ = B⃗ = π⃗ . Note that, unlike regular vectors, π⃗ × π⃗ ̸= 0. This is because π⃗ contains a function
of x, A⃗(x) , which does not commute with P⃗ . Let’s calculate what it is using the ϵijk symbol:

(π⃗ × π⃗)i = ϵijkπjπk = ϵijk [Pj(−qAk) + (−qAj)Pk] = iqϵijk [(∂jAk) + Ak∂j + qAj∂k] = iq(∇⃗ × A⃗)i = iqBi,(5)

where we dropped symmetric terms PjPk , AjAk and Ak∂j + Aj∂k since they are contracted with ϵijk. Also
note that in this notation, operators act on everything on the right side unless they are in parenthesis, that is
∂jAk = (∂jAk) + Ak∂j .) Then the equation for χ becomes

(E2 − m2)χ =
(

Iπ⃗2 − qB⃗ · σ⃗
)

χ. (6)

We choose A⃗ = −yB0î for which Eq. (6) becomes

(E2 − m2)χ =
[
I((Px + qyB0)2 + P 2

y + P 2
z ) − qB0σz

]
χ. (7)

Note that Eq. (7) has no x and z dependence which suggests that the solutions must be plane waves along
the x and z axis, that is ξ = ζ eipxx+ipzz . The new equation in ζ becomes[

I

(
(Px + qyB0)2 − d2

dy2 − E2 − m2 + P 2
z

)
+ qB0σz

]
ζ = 0. (8)

Note the changes: the operators Px and Pz became px and pz because of the plane wave expansion. Now we
rewrite the equation once more,[

I

(
d2

dy2 − (px + qyB0)2 + E2 − m2 − p2
z

)
+ qB0σz

]
ζ = 0. (9)
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In terms of the components we have
d2

dy2 − (px + qyB0)2 0
+E2 − m2 − p2

z + qB0
d2

dy2 − (px + qyB0)2

0 +E2 − m2 − p2
z − qB0


(

ζ+

ζ−

)
= 0. (10)

We have two decoupled equations which differ by the sign of the B0 term only. We can actually combine
them into one form introducing a parameter which simply encodes that sign, namely(

d2

dy2 − (px + qyB0)2 + E2 − m2 − p2
z + sqB0

)
ζs = 0, (11)

where s = ± . We are almost there since our equation is familiar; it is like the differential equation for Hermite
polynomials. We can reveal that it is indeed the case if we define a dimensionless parameter ξ =

√
qB0(y+ px

qB0
)

. In this new variable we have, (
d2

dξ2 − ξ2 + as

)
ζs = 0, (12)

where
as = E2 − m2 − p2

z + sqB0

|q|B0
. (13)

From the harmonic oscillator solution we know that Eq. (12) admits normalizable solutions only if as = 2ν + 1
where ν = 0, 1, 2, · · · . Finally we solve Eq. (13) for E to get,

E =
√

(2ν + 1)|q|B0 + m2 + p2
z − sqB0. (14)

Some comments on our final result: first note that there is a continuous parameter pz in the answer, so we
can change the energy continuously. But this is the trivial part of the result since nothing depends on z it
is obvious that energy will change with p2

z in the way the relativistic energy-momentum relation requires.
Assume pz is fixed. There are two parameters left, ν and s . ν labels the level of the harmonic oscillator, and
s labels the spin. For each ν, there are two levels of energy corresponding to spin up and spin down states.
Note that the energy is dominated by the mass term for non relativistic particles. Let’s expand it out to
linearize it:

E = m
√

1 + (2ν + 1)|q|B0/m2 + p2
z/m2 − sqB0/m2 ≃ m + (2ν + 1)|q|B0

2m
− sq

2m
B0. (15)

sq
2m term in front of B0 is the dipole moment of the fermion, and the 1/2 factor is correctly produced by the
Dirac theory.
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