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Electron Hydrogen scattering

Abstract

We use the Born approximation to compute the differential cross section for the elastic scattering of a fast
electron by a hydrogen atom in the ground state. We will treat the hydrogen atom as a fixed target with
a time-independent charge distribution.
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In Born approximation the differential cross section is given by

dσ

dΩ =
∣∣∣∣ m2π

∫
d3re−iq· rVI(r)

∣∣∣∣2
, (1)

where VI(r) = eV (r) is the interaction energy of the incoming electron with the hydrogen atom. It will be
better to do the calculation in two parts since V (r) is contributed by two charge constituents, the proton
and the electron. The contribution from the proton is straightforward to compute since we know Vp(r) right
away: Vp(r) = e

r . The corresponding integral to be calculated as

I1 ≡ m

2π

∫
d3re−iq· r e

2

r
. (2)

Unfortunately this integral is divergent, but we can regularize it by introducing an exponentially decaying
function e−ϵr, with ϵ > 0. What we do is to evaluate the integral with Vp(r) = e2e−ϵr

r and let ϵ → 0 in
the final answer (unlike physicists, mathematicians would strongly object: “You cannot change the order of
integration and the limit ϵ → 0”. We can think of it as assigning a finite number to a divergent integral by
the renormalization procedure. Physically e−ϵr/r terms represents the potential due a massive particle of
mass ϵ.) In this case we have

I1 ≡ me2

2π

∫
d3re−iq·r e

−ϵr

r
= 2me2

∫
dr

sin(qr)
q

e−ϵr = 2me2

q
ℑ

{∫ ∞

0
dre−r(ϵ−iq)

}
= 2me2

q
ℑ

{
1

ϵ− iq
= 2me2

ϵ2 + q2

}
= 2me2

q2 , (3)

where we finally set ϵ = 0.
The second contribution comes from the electron cloud. The potential due to electron in the ground state

is given as

Ve(r) = e(e
−r/a0

r
− 1
r

+ 1
a0
e−r/a0). (4)

The first idea would be to plug this into the integral, and have fun. . . It can be done, but let’s try something
else,

I2 ≡ me

2π

∫
d3re−iq· rVe(r) = 2me

q

∫ ∞

0
rVe(r) sin(qr)dr (5)

Now the idea is the integration by parts twice with the definitions U = rV (r) an dV = sin(qr) for the first
one and U = d

dr (rV (r)) an dV = cos(qr) for the second one. Note that we can drop UV|∞0 since U vanishes
at the boundaries. After two integration by parts we get

I2 = −2m
q3

∫ ∞

0

d2

dr2 (rVe(r)) sin(qr)dr. (6)

email: quarktetra@gmail.com
Find the interactive HTML-document here.

mailto:quarktetra@gmail.com
https://tetraquark.netlify.app/post/electron_hydrogen_scattering/electron_hydrogen_scattering/index.html


2

What we have achieved is d2

dr2 (rVe(r)) term, which is r ∇2Ve. By Poisson’s equation it can be replaced by
r(− 4πρe(r)) where

ρe(r) = −e|ψ(r)|2 = − e

πa3
0
e−2r/a0 (7)

So the integral we need to deal with is

I2 = −8me2

a3
0q

3

∫ ∞

0
re−2r/a0 sin(qr)dr = −8me2

a3
0q

3 ℑ
{∫ ∞

0
re−(2/a0−iq)rdr

}
= −8me2

a3
0q

3 ℑ

{(
−d
dα

)
α=(2/a0−iq)

∫ ∞

0
e−αrdr

}

= −8me2

a3
0q

3 ℑ
{

qa0

(2 − iqa0)2

}
= − 32me2

[4 + (qa0)2]2q2 . (8)

Combining both terms we have

dσ

dΩ = 4m2e4

q4

(
1 − 16

[4 + (qa0)2]2

)2
. (9)

Before we discuss the limiting cases, let’s solve the problem one more time using a shortcut. The object we
are dealing with is,

I =
∫
d3re−iq· rV (r), (10)

which is nothing but the Fourier transform of the potential energy. Instead of jumping onto the problem
head on, let’s follow a detour. Consider the Poisson’s equation,

∇2V (r) = −4πρ(r) = −4πe(δ(−→r ) − ρe(r)). (11)

Instead of Fourier transforming the potential itself, we can Fourier transform Eq. (11) which gives

− q2Ṽ (q) = −4πe(1 − F{ρe(r)}) → Ṽ (q) = 4πe(1 − F{ρe(r)})
q2 . (12)

F{ρe(r)} term is to be calculated by usual means, and in reproduces the second term in Eq (9).
For large qa0 the second term in Eq. (9), which accounts for the electron cloud, can be neglected. So the

incoming electrons are deflected only by the proton. For small qa0 the cross section becomes zero which is a
manifestation of the fact that the hydrogen atom is neutral. This means that only highly deflected electrons
can probe into the electron cloud, and “see” the proton.


