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Abstract
Optical calculations related to Fabry-Perot cavity. Find the web-page here.

Several months ago I shared a series of posts on the LIGO (Laser Interferometer Gravitational-Wave
Observatory) optics and photodetector circuits. The content was mostly around the electronics to optimize
the noise performance of the read out circuitry. I skipped some of the fascinating details related to optics.
Today we will focus on optics and derive some neat formulas that make the LIGO tick. Fabry-Perot cavity
will be the main interest and we will show how it can be used for various purposes.

Here is the list of earlier posts , in case you may find them useful to read through:

• Re-optimizing aLIGO RF filter,
• Real coils are not purely imaginary,
• An analysis of aLIGO PD circuit,
• LIGO modulation,
• RLC filters.

1 Introduction
The Fabry-Perot interferometer, also known as a Fabry-Perot cavity or etalon, is an optical device that has
revolutionized numerous fields in science and technology [1]. Developed by Charles Fabry and Alfred Perot in
1899 [2], it consists of two parallel, highly reflective surfaces separated by a specific distance. Its design allows
it to produce sharp interference fringes, making it a powerful tool for high-resolution spectroscopy, laser
technology, and precision measurements [3]. The Fabry-Perot interferometer’s ability to selectively transmit
or reflect light based on its wavelength has found applications in telecommunications, astronomy, and even in
the detection of gravitational waves [4], [5].

2 The Geometry
Consider two parallel mirrors placed with a distance of L as illustrated in Fig. 1.
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Figure 1: Two semi-reflective mirrors placed in parallel with a distance of L. The light will reflect multiple
times between the mirrors.

A plane wave of amplitude ε impinges on the setup from the left. Each time the light ray passes through
a mirror, it acquires a factor of t, the transmission coefficient, and each time it’s reflected, it acquires a
reflection coefficient r. We need to keep track of these factors and sum them up. Another crucial detail is the
phase shift as light travels between the mirrors. The distance it covers in a one-way trip is L/ cos θ. Let’s
follow the ray as it splits into two at point A. One portion passes through the mirror and arrives at point D.
The remaining part is reflected at point A, then a smaller portion of it is reflected at B to reach point C.
Finally, some of it will transmit through the right mirror.

Note that we must compare the phases at points C and D, not at C and A. This is because the wavefront is
tilted at an angle θ. The path difference is:

∆ = |AB| + |BC| − |AD|. (1)

It is straightforward to calculate the distances as

|AB| = |BC| = L

cos θ
, |AD| = sin θ|AC| = sin θ (2 sin θ|AB|) = 2 sin2 θ

L

cos θ
. (2)

Putting these back into Eq. (1), we get

∆ = 2 L

cos θ

(
1 − sin2 θ

)
= 2L cos θ. (3)

Therefore the phase factor reads:

eik2L cos θ = ei 2πL cos θ
λ ≡ eiθT , (4)

where λ is the wavelength of the light and we defined θT ≡ 2πL cos θ
λ as the phase shift for one-way travel. Let

us now compute the light transmitted all the way to the right side by sum over all the blue arrows pointing
right:

εT = εtiteeiθT + εtitererie
i3θT + εtiter2

er2
i ei5θT + εtiter3

er3
i ei7θT + · · ·

= εtiteeiθT

{
1 + rerie

i2θT +
(
rerie

i2θT
)2 +

(
rerie

i2θT
)3 + · · ·

}
= εtiteeiθT

1
1 − reriei2θT

. (5)
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Let’s consider what happens to the phase upon reflection. The phase shifts for two-sided mirrors require
careful consideration. For two-sided mirrors, the phase shift occurs for light incident from one side of the
mirror. This can be demonstrated using reciprocity arguments, i.e., rL = −rR, where rL and rR are the
reflection coefficients for light incident from the left and right sides, respectively.

In our previous calculation, we adopted the conventional approach where the phase shift is defined as π for
reflections occurring inside the cavity. However, this phase shift effectively disappears for transmitted rays
because there are always an even number of reflections. It’s worth noting that all reflections, except for the
very first one, occur inside the cavity. With these considerations in mind, let’s now calculate the reflected
beam by summing the blue arrows pointing left:

εR = εri − εt2
i reei2θT − εt2

i r2
er2

i ei4θT − εt2
i r3

er3
i ei6θT + · · ·

= εri − εt2
i reei2θT

{
1 +

(
rerie

i2θT
)2 +

(
rerie

i2θT
)3 + · · ·

}
= εri − εt2

i reei2θT
1

1 − reriei2θT
, (6)

where the minus sign is a result of odd number of reflections inside the cavity. Now let’s make use of the
conservation of energy:

t2 + r2 + l = 1 =⇒ t2 = 1 − r2 − l, (7)

where l is the loss term. Inserting back this back in Eq. (6), we get

εR = εri − εre(1 − r2
i − li)ei2θT

1
1 − reriei2θT

= ε
ri − rer2

i ei2θT − re(1 − r2
i − li)ei2θT

1 − reriei2θT

= ε
ri − re(1 − li)ei2θT

1 − reriei2θT
. (8)

There is a quicker way of computing the coefficient. Consider the illustration in Fig. 2.

εcirc
εinc
εref
εback

εtr

Figure 2: The cavity creates a circulating filed inside. The reflected and transmitted fields can be written in
terms of Ecirc in a recursive way.

εcirc is the field at the right side of the mirror on the left. It reflects twice and gets a phaseshift to combine
back into εcirc. That is:

εcirc = εti + rireei2θT εcirc =⇒ εcirc = ti

1 − rireei2θT
ε. (9)

The transmitted field is easy to write down:

εT = teeiθT εcirc = εeiθT
tite

1 − rireei2θT
, (10)

which is identical to Eq. (5). Similarly for the reflected light, we have

εref = εri − tireei2θT εcirc = εri − tireei2θT
ti

1 − rireei2θT
ε, (11)

which is identical to Eq. (6) that led to Eq. (8)
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3 Finesse
Let’s go and play with Eq. (5) a bit.

T ≡ εT

ε
= |tite|2

|1 − reriei2θT |2
= |tite|2

1 − r2
er2

i − 2reri cos(2θT ) = |tite|2

(1 − reri)2
1

1 + 4reri

(1−reri)2 sin2(θT )
. (12)

It is periodic and will have its peaks at:

θT = 2πL cos θ

λ
= mπ =⇒ θm = arccos

(
mλ

2L

)
, (13)

where m is an integer. To clean up the notation a bit, let’s define

Φ ≡ 4reri

(1 − reri)2 , (14)

which will transform the transmission coefficient to

T = |tite|2

(1 − reri)2
1

1 + Φ sin2(θT )
. (15)

It is convenient to define an angle, θ∗
T at which T is equal to the half of its peak value. The peak value is

Tp = |tite|2

(1−reri)2 . We require

T (θ∗
T ) = 1

2Tp = |tite|2

(1 − reri)2
1

1 + Φ sin2(θ∗
T )

== 1
2

|tite|2

(1 − reri)2
1
2 =⇒ θ∗

T = arcsin 1√
Φ

. (16)

The function is symmetric in θT . The width between these two symmetric points of half peak is 2θ∗
T =

2 arcsin 1√
Φ . Also remember that the spacing of the peaks is π. The ratio of the separation of fringes to the

width of half peak points is defined as Finesse

F = π

2θ∗
T

= π

2 arcsin 1√
Φ

. (17)

Φ is typically a large number. Therefore arcsin 1√
Φ ≃ 1√

Φ . The finesse can be simplified as

F = π
√

Φ
2 =

π
√

reri

1 − reri
. (18)

We can define three modes of operation when λ = 2L
m cos θ [6]

1. Under coupling: εref > 0 when ri > re(1 − li),

2. Optimal coupling: εref = 0 when ri = re(1 − li),

3. Over coupling: εref < 0 when ri < re(1 − li).

For LIGO, the coefficients are t2
i = 0.03, and r2

e = 0.99997 [6] which give F = 208 for 4km arms. Light
storage time in a cavity is defined as

τ = F L

c
, (19)

which is about 870 ms.
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4 Bulls Eye
This discussion is not relevant for LIGO since θ ≃ 0 for their detector. For spectroscopic applications, θ has
some variation, and we want to understand how it affects the interference pattern. Let us turn back to Fig.
1, which has a bunch of outgoing rays. If you look at textbooks or popular youtube channels on the topic,
they will tell you that when these rays are projected on a screen with a focusing lens, you will get a bullseye
pattern, i.e., concentric cirles of fringes, as shown in Fig. 3.
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Figure 3: A somewhat-misleading cartoon of the supposed interference pattern when the screen is viewed
from front.

This explanation is somewhat misleading. Let’s break it down:

1. If you shine a collimated laser beam of negligible radius into the cavity, you’ll get a series of transmitted
beams exiting the cavity that will all be focused to a single point by the lens (ignoring spherical
aberration). There’s nothing in Fig. 3 on the source side that would create rings on the screen.

2. To get multiple rings, you need an extended source that provides light at different angles θ. As you
sweep through the source coordinates, the projection on the screen will trace out circles of varying radii
ρ = f tan θ. The brightness of each ring depends on the interference conditions given by Eq. (5).

To produce the classic bullseye pattern, you need either:

1. An extended source, as shown in Fig. 4 [7], or
2. A divergent beam, which can be created by passing the laser light through a concave lens before it

enters the cavity.

These configurations provide the range of incident angles necessary to create the multiple interference rings.
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Figure 4: A more realistic illustration of the setup leading to the bullseye pattern. Image taken from [@ewart].

To formulate the interference pattern mathematically, we can write the transfer function, or the Green’s
function as physicists will call it, for the system that maps the input rays to points on the screen. It will be
something like this:

G(ρ, ϕ; θ′, ϕ′) = δ(ρ − f tan θ′)δ(ϕ − ϕ′)T (θ′) = δ(ρ − f tan θ′)δ(ϕ − ϕ′) |tite|2

(1 − reri)2
1

1 + Φ sin2(θ′
T )

,(20)

where, θ′
T = 2πL cos θ′

λ and we use primed coordinates for the source points. If the source distribution is given
by some function, S(θ′, ϕ′), the image on the screen will be:

I(ρ, ϕ) =
∫

S
dθ′dϕ′G(ρ, ϕ; θ′, ϕ′)S(θ′, ϕ′), (21)

where the integral is computed over the source points. Let’s do a test run with a single laser pointer aimed in
the direction (θ′, ϕ′) = (θL, ϕL); that is:

S(θ′, ϕ′) = S0δ(θ′ − θL)δ(ϕ′ − ϕL), (22)

where S0 is the intensity. Plugging this into Eq. (21) we get:

I(ρ, ϕ) = S0

∫
S

dθ′dϕ′G(ρ, ϕ; θ′, ϕ′)δ(θ′ − θL)δ(ϕ′ − ϕL)

= δ(ρ − f tan θL)δ(ϕ − ϕL) |tite|2

(1 − reri)2
S0

1 + Φ sin2(θL
T )

, (23)

which is a single point at position ρ = f tan θL and ϕ = ϕL. The intensity is proportinal to 1/(1 + Φ sin2(θL
T )),

so it may be a dark spot depending on the value of θL
T .
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If the input is a cone of light, i.e., it covers ϕ′ uniformly; this will remove the δ(ϕ − ϕL) from the output,
and the result will be ∝ δ(ρ − f tan θL), i.e., a ring of ρ = f tan θL. But, remember, it can be a dark one
depending on the value of θL.

Finally, if the source provides a collection of θ′ rays, now the ρ will have a range. Let’s say the source is
producing somewhat isotropic light of intensity S0, i.e., uniform for any angle, then we will get the collection
of rings:

I(ρ, ϕ) = S0

∫
S

dθ′dϕ′G(ρ, ϕ; θ′, ϕ′) = S0

∫
S

dθ′dϕ′δ(ρ − f tan θ′)δ(ϕ − ϕ′) |tite|2

(1 − reri)2
1

1 + Φ sin2(θ′
T )

= S0

∫
S

dθ′δ(ρ − f tan θ′) |tite|2

(1 − reri)2
1

1 + Φ sin2(θ′
T )

. (24)

Let’s evaluate this integral. First of all we need to deal with the pesky δ(ρ − f tan θ′) term. It will set
θ′ = θ0 = arctan(ρ/f), (which also means cos θ0 = f√

f2+ρ2
), but it will need to figure out the scaling of the

integral measure. Let do this dummy shift of variable: θ′ = (θ′ − θo) + θ0:

δ(ρ − f tan θ′) = δ (ρ − f tan ((θ′ − θo) + θ0)) = δ (ρ − f (tan θ0 + (θ′ − θo) tan′ θ0))

= δ (f tan′ θ0(θ′ − θo)) = δ

(
f

cos2 θ0
(θ′ − θo)

)
= cos2 θ0

f
δ (θ′ − θo)

= f

f2 + ρ2 δ (θ′ − θo) . (25)

Putting this back in Eq. (24), we get

I(ρ) = S0
f

f2 + ρ2
|tite|2

(1 − reri)2
1

1 + Φ sin2(θ′
T )

∣∣∣∣
θ′=arctan(ρ/f)

. (26)

Finally, let’s insert the definition of θ′
T ≡ 2πL cos θ′

λ to write down the final equation:

I(ρ) = fS0

f2 + ρ2
|tite|2

(1 − reri)2
1

1 + Φ sin2
(

2πLf

λ
√

f2+ρ2

) . (27)

ρ is the radial distance from the center, and as it varies we will hit the zeros of sin function which will create
the bullseye pattern.

5 Plots
I am working on an interactive plotting tool, which is looks pretty pretty good. I will update the post once it
is all done, please check back later.
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