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Abstract

Gamma distribution appears as we add exponentially distributed random numbers. We show this
using two different methods, including Laplace transforms. Find the web-page here.

S, = Z?:l T; is a sum of n random numbers. It is illustrative to consider n = 2 case and figure out the
distribution of the sum of two random numbers 77 and T5. The cumulative probability density of So = T7 +15
is given by:

Fs,(t) = P +Tx<1) =/ fri (t) fr, (t2)dtrdts = /OO / h [, (t2)dts fr, (t1)dty
t1+ta<t —o0 J —00
- /Oo Fr, (t — t1) fr, (t1)dty. (1)

The probability density function is the derivative of Eq. (1):
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where the limits of the integral are truncated to the range where f # 0. The integral in Eq.(2) is known as
the convolution integral:

fr ® fr, E[ fr (t —t1) fr, (t1)dty. (3)

In the special case of exponential distributions, f is parameterized by a single parameter A, which represents
the failure rate, and it is given by

frt) = Xxe ™, t>0. (4)
From Eq. (2) we get:
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which is actually a I' distribution. The corresponding cumulative failure function is:
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This is pretty neat. Can we move to the next level and add another T;, i.e., S3 =T + To + T35 = Sy + T5.
We just reiterate Eq. (2) with probability density for Sy from Eq. (5).
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https://tetraquark.netlify.app/post/gammadist/gammadist/index.html

which was very easy! In fact, we can keep adding more terms. The exponentials kindly drop out of the #;
integral, and we will be simply integrating powers of ¢1, and for S, =Ty + T, + --- + T}, to get:
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It will be fun if we redo this with some advanced mathematical tools, such as the Laplace transform, which is
defined as:

F(s) = L[F0)] = / Cdte (). (9)

There are a couple of nice features of the Laplace transforms we can make use of. The first one is the mapping
of convolution integrals in ¢ space to multiplication in s space. To show this, let’s take the Laplace transform
of Eq. (3):
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Let’s take a closer look at the middle integral:
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where we first defined 7 =t — ¢;, and then shifted the lower limit of the integral back to 0 since fr,(t) =0
for t < 0. Putting this back in, we have the nice property:

‘C[le ® fTQ] = le (S)sz(S) (12)

How do we make use of this? The probability distribution of a sum of random numbers is the convolution of
individual distributions:

fsn=fr®fr,® - ® fr, . (13)
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We can map this convolution to multiplications in s space:

fs.(s)=L[fs,] = lesz - fr., —HfT (14)
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When the individual random numbers are independent and have the same distribution, we get:
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If the random numbers are exponentially distributed, as in Eq. (4), their Laplace transformation is easy to
compute:
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which mean the Laplace transform of the sum is:
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We will have to inverse transform Eq. (17), which will require some trick. This brings us to the second nifty
property of Laplace transform. Consider transforming ¢f(¢):
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Therefore, we see that Laplace transform maps the operation of multiplying with ¢ to taking negative
derivatives in s space:
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We re-write Eq. (17) as:
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Using the property in Eq. (19), we can invert the transform:
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which is what we got earlier in Eq. (8).



