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Abstract
Gamma distribution appears as we add exponentially distributed random numbers. We show this

using two different methods, including Laplace transforms. Find the web-page here.

Sn =
∑n

i=1 Ti is a sum of n random numbers. It is illustrative to consider n = 2 case and figure out the
distribution of the sum of two random numbers T1 and T2. The cumulative probability density of S2 ≡ T1 +T2
is given by:

FS2(t) = P (T1 + T2 < t) =
∫

t1+t2<t

fT1(t1)fT2(t2)dt1dt2 =
∫ ∞

−∞

∫ t−t2

−∞
fT2(t2)dt2fT1(t1)dt1

=
∫ ∞

−∞
FT2(t − t1)fT1(t1)dt1. (1)

The probability density function is the derivative of Eq. (1):

fS2(t) = d

dt
FS2(t) =

∫ ∞

−∞
fT2(t − t1)fT1(t1)dt1 =

∫ t

0
fT2(t − t1)fT1(t1)dt1, (2)

where the limits of the integral are truncated to the range where f ̸= 0. The integral in Eq.(2) is known as
the convolution integral:

fT1 ⊛ fT2 ≡
∫ ∞

−∞
fT2(t − t1)fT1(t1)dt1. (3)

In the special case of exponential distributions, f is parameterized by a single parameter λ, which represents
the failure rate, and it is given by

fT (t) = λe−λt, t > 0. (4)

From Eq. (2) we get:

fS2(t) =
∫ t

0
fT2(t − t1)fT1(t1)dt1 = λ2

∫ t

0
e−λ(t−t1)e−λt1dt1 = λ2e−λt

∫ t

0
dt1 = λ2 t e−λt, (5)

which is actually a Γ distribution. The corresponding cumulative failure function is:

FS2(t) =
∫ t

0
dτfS2(τ) = λ2

∫ t

0
dτ τ e−λτ = −λ2 d

dλ

[∫ t

0
dτ e−λτ

]
= λ2 d

dλ

[
e−λt − 1

λ

]
= 1 − e−λt(1 + λt). (6)

This is pretty neat. Can we move to the next level and add another Ti, i.e., S3 = T1 + T2 + T3 = S2 + T3.
We just reiterate Eq. (2) with probability density for S2 from Eq. (5).

fS3(t) =
∫ t

0
fT3(t − t1)fS2(t1) = λ3

∫ t

0
e−λ(t−t1)t1 e−λt1dt1 = λ3 t2

2 e−λt, (7)
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which was very easy! In fact, we can keep adding more terms. The exponentials kindly drop out of the t1
integral, and we will be simply integrating powers of t1, and for Sn ≡ T1 + Tn + · · · + Tn to get:

fSn(t) = λn tn−1

(n − 1)!e
−λt. (8)

It will be fun if we redo this with some advanced mathematical tools, such as the Laplace transform, which is
defined as:

f̃(s) ≡ L
[
f(t)

]
=

∫ ∞

0
dt e−s tf(t). (9)

There are a couple of nice features of the Laplace transforms we can make use of. The first one is the mapping
of convolution integrals in t space to multiplication in s space. To show this, let’s take the Laplace transform
of Eq. (3):

L
[
fT1 ⊛ fT2

]
=

∫ ∞

0
dt e−s t

∫ ∞

−∞
fT2(t − t1)fT1(t1)dt1 =

∫ ∞

−∞
dt1

∫ ∞

0
dt e−s (t−t1)fT2(t − t1)e−s t1fT1(t1). (10)

Let’s take a closer look at the middle integral:∫ ∞

0
dt e−s (t−t1)fT2(t − t1) =

∫ ∞

−t1

dt e−sτ fT2(τ) =
∫ ∞

0
dτ e−sτ fT2(τ) = f̃T2(s), (11)

where we first defined τ = t − t1, and then shifted the lower limit of the integral back to 0 since fT2(t) = 0
for t < 0. Putting this back in, we have the nice property:

L
[
fT1 ⊛ fT2

]
= f̃T1(s)f̃T2(s). (12)

How do we make use of this? The probability distribution of a sum of random numbers is the convolution of
individual distributions:

fSn
= fT1 ⊛ fT2 ⊛ · · · ⊛ fTn︸ ︷︷ ︸

n times

. (13)

We can map this convolution to multiplications in s space:

f̃Sn
(s) ≡ L

[
fSn

]
= f̃T1 f̃T2 · · · f̃Tn︸ ︷︷ ︸

n times

=
n∏

j=1
f̃Tj

. (14)

When the individual random numbers are independent and have the same distribution, we get:

f̃Sn
(s) =

(
f̃Tj

)n
. (15)

If the random numbers are exponentially distributed, as in Eq. (4), their Laplace transformation is easy to
compute:

f̃(s) =
∫ ∞

0
dt e−s tλe−λt = λ

s + λ
, (16)

which mean the Laplace transform of the sum is:

f̃Sn
(s) =

(
λ

s + λ

)n

. (17)

We will have to inverse transform Eq. (17), which will require some trick. This brings us to the second nifty
property of Laplace transform. Consider transforming tf(t):
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L
[
tf(t)

]
=

∫ ∞

0
dt te−s tf(t) = − d

ds

[∫ ∞

0
dte−s tf(t)

]
= − d

ds

[
f̃(s)

]
. (18)

Therefore, we see that Laplace transform maps the operation of multiplying with t to taking negative
derivatives in s space:

t ⇐⇒ − d

ds
. (19)

We re-write Eq. (17) as:

f̃Sn
(s) =

(
λ

s + λ

)n

= λn

(n − 1)!

(
− d

ds

)n (
λ

s + λ

)
. (20)

Using the property in Eq. (19), we can invert the transform:

fSn
(t) = L−1[

fSn

]
= = λn tn−1

(n − 1)!e
−λt, (21)

which is what we got earlier in Eq. (8).
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