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Abstract
Deriving the Green’s function for the radial part in cylindrical coordinates.
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The Laplace operator in cylindrical coordinates reads
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The Green’s function G is defined as the solution of the following differential equation:

∇⃗2G(r⃗) = δ3(r⃗) = 1
r

δ(r)δ(θ)δ(z). (2)

We will consider problems with no θ and z dependence, and that will leave behind the r dependence. Let’s
solve this for r > 0:
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where C and D are constants. The term D is not that interesting since it will drop up on being acted on by
d

dr , and therefore we can set it to 0. However, we do need to figure out what C is. Although, ln(r) diverges
at r = 0, the overall expression with the derivatives vanishes. This will require a lot of care to handle the
singularity properly. To this end, let’s protect the function by introducing a parameter ϵ, which we will set to
zero when all is said and done:

Gϵ(r) ≡ C ln(r + ϵ), (4)

Inserting this back into Eq. (3), we get
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δ(r)δ(θ)δ(z). (5)

Integrating this over whole space:

∫ ∞
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where h is an arbitrary length along the z axis. Note that we need h so that the units make sense. In pure
mathematical expression, one wouldn’t care about it. However, imagine that r has the unit of length L. ∇2

has the unit of L−2. δ3(r⃗) has the unit of L−3. To match the units, G has the have the unit as L−1, which
comes from the coefficient C. h can be set to 1, a unitless value, and the unit can be absorbed into G to get:

G(r) = 1
2π

ln(r). (7)
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The ϵ business is a tricky one, and we could have avoided it if we invoked the Gauss theorem by integrating
Eq. (2):∫
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which would return the same value of C.
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