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Forced & damped Harmonic Oscillator

Abstract

Mass-spring system with dumping and driving forces. A full solution is presented with interactive plots.
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I. Harmonic Oscillator

Consider the two distinct physical systems illustrated below in Fig. 1:
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Table I: Descriptions of the parameters

Spring-Mass RLC circuit
Parameter Description Parameter Description

k Spring constant C Capacity
c Damping coefficient R Resistance
m mass of the object L inductance

f(t) External force V (t) External Voltage

Figure 1: Left:Mass-Spring system with damping driven by an external force, Right: RLC circuit driven by
an external voltage source

Although they are totally different physical systems, the differential equations governing them are very
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similar, and they can be written as:

m
d2x

dt2 + c
dx

dt
+ kx = f(t) (Newton’s second law) (1)

L
d2Q

dt2 + R
dQ

dt
+ Q

C
= V (t) (Kirchhoff’s Voltage Law). (2)

(3)

The parameters are described in Table I.

A. Analytical solution

Let’s concentrate on Eq. (1) , and divide the equation by m. The simplified differential equation for forced
harmonic oscillator with damping reads:

ẍ + 2ζω0ẋ + ω2
0x = f(t)

m
, x(0) = x0, and ẋ(0) = ẋ0, (4)

where ẋ ≡ dx
dt , ω0 ≡

√
k
m is the natural frequency of the oscillation, and ζ ≡ c

2
√

mk
is the damping ratio.

We also included the initial conditions. We are dealing with an in-homogeneous linear differential equation
with constant coefficients. One of the best tools to solve such equations is the Laplace transformation:

X(s) = L
[
x(t)

]
=

∫ ∞

0
dt e−s tx(t). (5)

The nice feature of the Laplace transformation is that it converts differential equations to algebraic
equations. It follows from the transformation property of the derivatives:

L
[
ẋ(t)

]
=

∫ ∞

0
dt e−s t dx

dt
=

∫ ∞

0
dt

d

dt

(
e−s tx

)
−

∫ ∞

0
dt

( d

dt
e−s t

)
x (6)

=
(
e−s tx

)∣∣∣∣∞

0
+ s

∫ ∞

0
dte−s tx = sX(s) − x0.

Similarly the second order derivative transforms as

L
[
ẍ(t)

]
= sL

[
ẋ(t)

]
− ẋ0 = s2X(s) − sx0 − ẋ0. (7)

Laplace transforming Eq. (4) we get

s2X − sx0 − ẋ0 + 2ζω0(sX − x0) + ω2
0X = 1

m
F (s). (8)

Solving Eq. (8) for X, we get

X = sx0 + 2ζω0x0 + ẋ0

s2 + 2ζω0s + ω2
0

+ 1
m

F (s)
s2 + 2ζω0s + ω2

0

= (s + ζω0)x0 + ζω0x0 + ẋ0

(s + ζω0)2 + ω2
0(1 − ζ2) + 1

m

F (s)
(s + ζω0)2 + ω2

0(1 − ζ2) . (9)

In order to evaluate the inverse Laplace transform, we need to know the functional form of the driving force.
Let’s assume that f(t) is of the following form:

f(t) = f0 sin(ωt). (10)

Its Laplace transform is given by:

F (s) ≡ L
[
f(t)

]
= f0ω

s2 + ω2 . (11)
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We will have to do some partial fraction expansion:
1

((s + ζω0)2 + ω2
0(1 − ζ2)) (s2 + ω2) = A(s + ζω0) + B

(s + ζω0)2 + ω2
0(1 − ζ2) + Cs + D

s2 + ω2 , (12)

which will be easy to convert back to time domain since they will correspond to sines and cosines with
exponential functions in front. We now need to figure out A, B, C and D. If we were to equate the
denominators and sum up the resulting numerators, we will see that, in order to set the coefficient of
the s3 term in the numerator to zero we will need A = −C. To relate C and D we can multiply (12) by
s − iω and then set s = iω. This will remove the first term on the right hand side and yield:

iωC + D = 1
(iω + ζω0)2 + ω2

0(1 − ζ2) (13)

This is a complex equation, and splitting it into the real and imaginary part, we get:

D(ω2
0 − ω2) − 2Cω2ω0ζ = 1

Cω(ω2
0 − ω2) + 2Dωω0ζ = 0. (14)

Inverting it, we get:

C = −2ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2

D = ω2
0 − ω2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 (15)

Finally, setting s = −ζω0, and going trough some algebra we get.

B = ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 . (16)

We can now inverse transform Eq. (9) using elementary properties of the transformation:

x(t) = L−1[
X(s)

]
. (17)

Inverse Laplace transformation yields.

x(t) =
[

x0 cos(ω0
√

1 − ζ2 t) + ζω0x0 + ẋ0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+2f0ω

m

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t cos(ω0
√

1 − ζ2 t)

+f0ω

m

1
ω0

√
1 − ζ2

ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t sin(ω0
√

1 − ζ2 t)

−2f0ω

m

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 cos(ω t) + f0

m

ω2 − ω2
0

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 sin(ω t). (18)

We can do one last touch and combine the last two terms into as single function with a phase shift.
The full solution with damping with f(t) = f0 sin(ω t), can be written as:

x(t) =
[

x0 cos(ω0
√

1 − ζ2 t) + ζω0x0 + ẋ0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+ f0ωe−ζω0t

m[(ω2
0 − ω2)2 + 4ω2ω2

0ζ2]

[
2ω0ζ cos(ω0

√
1 − ζ2 t) + ω2 − ω2

0 + 2ω2
0ζ2

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
+ g

m
√

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2
sin(ω t − δ) (19)
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where δ ≡ arctan
[

2ω ω0ζ
ω2

0−ω2

]
, the first line is related to the initial conditions, the second and third lines are

the transient response, and finally the last line is the steady state solution.
Few observations:
At later times, t ≫ 1/(ζω0), i.e., in the steady state, only the last term survives.
The x(t) is sinusoidal, but it will lag by a phase δ.
The sytem will enter in resonance at ω = ω0

√
1 − 2ζ.

The value of the resonance amplitude is f0/(2ω2
0ζ

√
1 − ζ2)

At ζ = 0 (no damping), the amplitude diverges. We need to go back and study this case carefully.
Resonances at zero damping: The final solution runs into problems when we consider ζ = 0 and ω = ω0:

the coefficient of the steady state solution diverges. This is because of the assumptions we made when we
were inverting X(s). At ζ = 0 and ω = ω0, two poles will merge and create a second order pole. Let’s take
a closer look:

lim
ζ→0, ω→ω0

1
((s + ζω0)2 + ω2

0(1 − ζ2)) (s2 + ω2
0) = 1

(s2 + ω2
0)2 . (20)

We can figure out how to inverse transform it by exploiting few features of the Laplace transforms as follows:

L−1
[

1
(s2 + ω2

0)2

]
= L−1

[
− 1

2s

d

ds

(
1

s2 + ω2
0

)]
= −1

2

∫ t

0
dττ

sin(ω0τ)
ω0

= − 1
2ω0

d

dω0

∫ t

0
dτ cos(ω0τ) = − 1

ω0

d

dω0

[
sin(ω0t)

ω0

]
= sin(ω0t) − ω0t cos(ω0t)

2ω3
0

(21)

The full solution at the resonance frequency(ω = ω0 ) with no damping (ζ = 0) is:

x(t) =
[
x0 cos(ω0 t) + ẋ0

ω0
sin(ω0 t)

]
+

[
f0

2mω2
0

(sin(ω0t) − ω0t cos(ω0t))
]

. (22)

This shows that the amplitute will grow with time. In reality the model will break at some point since the
ampliture of oscillations cannot grow indefinitely. (For example, the spring will literaly break if it is stretched
too far.)

II. Visuals

Figure 2: Damped and forced harmonic oscillator .
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