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Abstract
A crazy-ass integral.
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I have been very busy for the last several months and didn’t have time to have fun with integrals, let alone
posting “integral of the month” series. It is not really “the integral of the month” if I don’t post monthly, is
it? To make up for the missing months, we will look into a crazy-ass integral which became famous on the
internet. This integral was post on stackexchange and a user, Cleo, posted an answer with no details of her
work. Then the wizard of integrals, Ron Gordon, worked out the solution, which matched Cleo’s answer.
Today we will follow Ron’s solution and I have to emphasize that he deserves all the credit for the derivation.
I am just here to walk you through it and enjoy the sneaky tricks he used.

1 Getting started
The first thing is to define a new variable

t = 1 − x

1 + x
⇐⇒ x = 1 − t

1 + t
, (1)

and

dt = d

(
1 − x

1 + x

)
= −dx(1 + x) − dx(1 − x)

(1 + x)2 = −2 dx

(1 + x)2 . (2)

Plugging x from Eq. (1) yields:

dt = −2 dx

(1 + x)2 = −2 dx

(1 + 1−t
1+t )2 = −dx

(1 + t)2

2 ⇐⇒ dx = − 2
(1 + t)2 dt. (3)

The factor in front of the logarithm and the integral measure simplify to:

dx

x

√
1 + x

1 − x
= − 2dt

(1 + t)2
1 + t

1 − t

1√
t

= −2dt

(1 − t2)
√

t
. (4)
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The argument of the logarithm becomes:

2x2 + 2x + 1
2x2 − 2x + 1 = 2(1 − t)2 + 2(1 − t)(1 + t) + (1 + t)2

2(1 − t)2 − 2(1 − t)(1 + t) + (1 + t)2 = t2 − 2t + 5
5t2 − 2t + 1 . (5)

Just stare at coefficients of the polynomial in the numerator and denominator in the logarithm. They are
flipped with respect to each other. In fact, one can switch form one to the other simply by transforming
t → 1/t. This will become critical later!

The limits of the x integral, [−1, 1], get mapped to [∞, 0]. Therefore, the integral looks like this:

I = 2
∫ ∞

0

dt√
t(1 − t2)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
. (6)

2 Inversion symmetry
Let’s split the integral into two domains as [0, 1] and [1, ∞]:

I = 2
∫ ∞

0

dt√
t(1 − t2)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
= 2

∫ 1

0

dt√
t(1 − t2)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
+ 2

∫ ∞

1

dt√
t(1 − t2)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
(7)

We will do an inversion for the second piece by defining s = 1
t

I2 = 2
∫ ∞

1

dt√
t(1 − t2)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
= −2

∫ 0

1

(−ds/s2)
√

s

(s2 − 1)/s2 log
(

s−2 − 2s−1 + 5
5s−2 − 2s−1 + 1

)
= −2

∫ 1

0

ds
√

s

s2 − 1 log
(

1 − 2s + 5s2

5 − 2s + s2

)
= 2

∫ 1

0

ds
√

s

1 − s2 log
(

5 − 2s + s2

1 − 2s + 5s2

)
. (8)

s is a dummy integration variable, and we can rename it as t. Now let’s add I2 back in:

I = 2
∫ 1

0
dt

(
1√
t

+
√

t

)
1

(1 − t2) log
(

t2 − 2t + 5
5t2 − 2t + 1

)
= 2

∫ 1

0
dt

(
1 + t√

t

)
1

1 − t2 log
(

t2 − 2t + 5
5t2 − 2t + 1

)
= 2

∫ 1

0

dt√
t(1 − t)

log
(

t2 − 2t + 5
5t2 − 2t + 1

)
. (9)

3 More transformations
Let’s first get rid of the pest

√
t by defining t = u2:

I = 4
∫ 1

0

du

1 − u2 log
(

u4 − 2u2 + 5
5u4 − 2u2 + 1

)
. (10)

We ten massage the du
1−u2 term a bit using fractional expansion:

4du

1 − u2 = 4du

(1 − u)(1 + u) = 2du

(
1

1 + u
+ 1

1 − u

)
= 2 (d [log(1 + u)] − d [log(1 − u)])

= 2d

[
log

(
1 + u

1 − u

)]
, (11)
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which basically prepares us for an integration by parts.

I = 2
∫ 1

0
d

[
log

(
1 + u

1 − u

)]
log

(
u4 − 2u2 + 5
5u4 − 2u2 + 1

)
= 2

∫ 1

0
d

[
log

(
1 + u

1 − u

)
log

(
u4 − 2u2 + 5
5u4 − 2u2 + 1

)]
− 2

∫ 1

0
log

(
1 + u

1 − u

)
d

[
log

(
u4 − 2u2 + 5
5u4 − 2u2 + 1

)]
=

[
log

(
1 + u

1 − u

)
log

(
u4 − 2u2 + 5
5u4 − 2u2 + 1

)]1

0
− 2

∫ 1

0
du log

(
1 + u

1 − u

)
5u4 − 2u2 + 1
u4 − 2u2 + 5

d

du

(
u4 − 2u2 + 5
5u4 − 2u2 + 1

)
= −2

∫ 1

0
du log

(
1 + u

1 − u

)
5u4 − 2u2 + 1
u4 − 2u2 + 5

(4u3 − 4u)(5u4 − 2u2 + 1) − (5u4 − 2u2 + 1)(4u3 − 4u)
(5u4 − 2u2 + 1)2

= −32
∫ 1

0
du log

(
1 + u

1 − u

)
u5 − 6u3 + u

(u4 − 2u2 + 5)(5u4 − 2u2 + 1) . (12)

Finally, it is more convenient to have a simple variable as th argument of the logarithm. We get that by
defining u = v−1

v+1 :

I = 8
∫ ∞

0
dv log v

(v2 − 1)(v4 − 6v2 + 1)
v8 + 4v6 + 70v4 + 4v2 + 1 . (13)

This is practically begging for complex integration with a branch cut!

4 Complex contour integral
We are going to use a trick that I discussed in one of my earlier posts. When we are dealing with integrand
of the form P (x)

Q(x) , we can introduce a log multiplier and do the integral over a key-hole contour as in Fig.
1. As I showed in that post, the real parts of the log(z) integrals will cancel out as we traverse the contour
above (C2) and below (C1) the real axis.

CR

Cϵ

C2

C1

Figure 1: Key-hole contour to evaluate the integral.

Note that our original integral already has a log in it, so we will double down on it and consider a log2 term.
When all said and done, one of the logs will drop out and we will collect the integral with a single log along
with the ratio of the polynomials. We will first upgrade the real parameter v to a complex parameter z and
consider the following closed contour integral:
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IC = 8
∮

c

dz (log z)2 (z2 − 1)(z4 − 6z2 + 1)
z8 + 4z6 + 70z4 + 4z2 + 1 ≡

∮
c

dz log2(z)P (z)
Q(z) , (14)

where the contour of the integration is shown in Fig. 1. The paths C1 and C2 are almost identical except for
the fact that they go in the opposite direction and one is above the real line and the other one is below it.
They can be parameterized as z = v ± iδ, where we will take δ → 0 limit. The polynomials behave nicely, so
we can set δ = 0 right away for them. But, log is tricky and it will have a jump of 2π across the branch cut.
An easier parameterization is to take z = veiδ on C1 and z = vei(2π−δ) on C2 such that the angles are defined
from 0 to 2π and we don’t cross the branch cut. This will enable us to evaluate the logs quickly. Let’s take a
close look at the integrand, log2(z) P (z)

Q(z) , on the paths C1 and C2:

lim
δ→0;ϵ→0

{∫
C1+C2

log2(z)P (z)
Q(z)

}
= lim

δ→0;ϵ→0

{∫ ∞

ϵ

dv
[
log(veiδ)

]2 P (veiδ)
Q(veiδ) +

∫ ϵ

∞

[
log(vei(2π−δ))

]2 P (vei(2π−δ))
Q(vei(2π−δ))

}
=

∫ ∞

0
dv log2 v

P (v)
Q(v) +

∫ 0

∞
(2πi + log v)2 P (v)

Q(v)

=
∫ ∞

0
dv

P (v)
Q(v)

[
log2 v + 4π2 − 4πi log v − log2 v

]
=

∫ ∞

0
dv

P (v)
Q(v)

[
4π2 − 4πi log v

]
, (15)

which is awesome! We have shown that the integration on the horizontal paths reduces down to the integral
we were looking for; almost! We ended up getting one additional integral with the coefficient 4π2. Let’s deal
with it! We can see from Eq.(14) that we still have z → 1/z symmetry in the polynomials and we can exploit
that to split the integral in two pieces:∫ ∞

0
dv

P (v)
Q(v) =

∫ 1

0
dv

P (v)
Q(v) +

∫ ∞

1
dv

P (v)
Q(v) . (16)

We flip the second integral by defining v = 1/s to get:∫ ∞

0
dv

P (v)
Q(v) =

∫ 1

0
dv

P (v)
Q(v) +

∫ 0

1
(−ds/s2)−s−6P (s)

s−8Q(s) =
∫ 1

0
dv

P (v)
Q(v) −

∫ 1

0
ds

P (s)
Q(s) = 0, (17)

and how cool is that! It simply vanishes! Let’s be rigorous and show that the other pieces of the integrals on
Cϵ and CR also vanish in the limit ϵ → 0 and R → ∞.

On Cϵ, the absolute value of the integrand is smaller than log(ϵ), and therefore the integral will be smaller
than 2πϵlog(ϵ), which converges to 0 as ϵ goes faster to zero than log(ϵ) goes to infinity. If you prefer a bit
more rigor, we can do the following:

lim
ϵ→0

ϵ log(ϵ) = lim
ϵ→0

log(ϵ)
1/ϵ

= lim
ϵ→0

1
ϵ

−1/ϵ2 = 0, (18)

where we used L’Hôpital’s rule.

On CR, the absolute value of the integrand is smaller than log2(R)/R2, and therefore the integral will be
smaller than 2πlog2(R)/R. We can see how it behaves as R → ∞ as follows:

lim
R→∞

log2(R)
R

= 2 lim
R→∞

log(R)
R

= 0. (19)

This shows that

I = 1
4πi

∮
c

dz (log z)2 8(z2 − 1)(z4 − 6z2 + 1)
z8 + 4z6 + 70z4 + 4z2 + 1 = 1

4πi
2πi

∑
zk

Residue(zk) = 1
2

∑
zk

Residue(zk), (20)

where zk’s are the poles inside the contour.
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5 Finding the residues
Finding the roots of the denominator and the corresponding residues is no easy task. Let us first explore the
symmetries of the Q(z) = z8 + 4z6 + 70z4 + 4z2 + 1. Note that it is even in the powers of z and enjoys z → −z
symmetry, and we might express it as product of two functions: Q(z) = q(z)q(−z). We can immediately
write down the highest and lowest power terms in q(z): q(z) = z4 + az3 + bz2 + cz + 1. We can find a and b
by matching the terms.

Q(z) = z8 + 4z6 + 70z4 + 4z2 + 1 = q(z)q(−z) = (z4 + az3 + bz2 + cz + 1)(z4 − az3 + bz2 − cz + 1)
= z8 + (−a2 + 2b)z6 + (2 − 2ac + b2)z4 + (2b − c2)z2 + 1. (21)

Matching the coefficients, and solving three equations in three unknowns with some help from Mathematica
we get:

q(z) = z4 + 4z3 + 10z2 + 4z + 1. (22)

Now we will attempt to use fractional expansion:

8(z2 − 1)(z4 − 6z2 + 1)
z8 + 4z6 + 70z4 + 4z2 + 1 =

[
A(z)
q(z) + A(−z)

q(−z)

]
, (23)

where we assigned A(−z) to the second coefficient, rather than a new function B(z), because the whole
expression needs to preserve z → −z symmetry. We can guess the degree of the A(z) by observing
that A(z)q(−z) + A(−z)q(z) needs to be at the 6 order, however A(z)q(−z) can have a 7th degree term
which will drop out up on the subtraction. Since Q is quartic, this leaves A at the cubic order at most. Let’s try

A(z) = αz3 + βz2 + θz + ζ, (24)

and require

8(z2 − 1)(z4 − 6z2 + 1) = A(z)q(−z) + A(−z)q(z)
= (αz3 + βz2 + θz + ζ)(z4 − 4z3 + 10z2 − 4z + 1)

+(−αz3 + βz2 − θz + ζ)(z4 + 4z3 + 10z2 + 4z + 1). (25)

We can fix ζ immediately by tracking the constant terms on the left and on the right: −8 = 2ζ =⇒ ζ = −4.
And matching z6 terms results in 8 = −8α + 2β. Matching z4 terms results in −56 = 2ζ − 8θ + 20β − 8α.
Matching z2 terms gives: −56 = 2β + 20ζ − 8θ. Solving all of these together we have:

A(z) = −
(
4z3 + 12z2 + 20z + 4

)
. (26)

Staring at Eqs. (22) and (26), we realize that we ended up with some remarkable relation:

A(z) = −q
′
(z). (27)

This allows us to write the whole ratio in a nice and compact way:

8(z2 − 1)(z4 − 6z2 + 1)
z8 + 4z6 + 70z4 + 4z2 + 1 = −

[
q′(z)
q(z) + q′(−z)

q(−z)

]
, (28)

with q(z) defined in Eq. (22). This is more than a gimmick! It will enable us to compute the residues in a
very elegant way.
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Consider a generic case f(z)
g(z) for which we want to compute the residues, say, for a first order pole at z = zk.

For analytic function, all we need to do is to look at the around the poles. To this end, we can expand g(z)

around zk to get g(z) =�
��*

0
g(zk) + (z − zk)g′(zk) + H.O.T. in (z − zk). And the ratio becomes f(zk)

g′(zk)
1

z−zk
, which

simply integrates to 2πi f(zk)
g′(zk) if it is the only pole. The beautiful simplification in our case in Eq. (28). is that

f(z) = g′(z), and therefore the contribution of the pole zk is simply 2πi. As for the q′(−z)/q(z) part, it will be
the same except for the sign, which can be shown as follows: q′(−z)/q(−z) = dq(−z)

dz /q(−z) = − dq(−z)
d(−z) /q(−z),

i.e., it picks up a minus sign.

Now it is finally time to compute the location of the poles. We started with an 8th order polynomial, which
was hopeless. But we split that into two 4th order polynomials as in Eq. (22). q(z) still enjoys z → 1/z
symmetry, and we can say that if there is a pole a a, there should be one at 1/a. Furthermore, the other
poles should be at the complex conjugate points so that when we expand everything out we get a polynomial
with real coefficients. Hence, this is what we conjecture:

q(z) = z4 + 4z3 + 10z2 + 4z + 1 = (z − a)(z − 1
a

)(z − ā)(z − 1
ā

). (29)

Now, expand this out and insert a = reiθ:

(r + 1
r

) cos θ = −2 (30)

(r2 + 1
r2 ) + 4 cos2 θ = 10. (31)

The solution becomes: r = ϕ +
√

ϕ and cos θ = 1/ϕ, where ϕ = 1+
√

5
2 is the golden ratio. Using the relation

1
ϕ+

√
ϕ

= ϕ −
√

ϕ, we can list the poles of q(z) like so:

z± = (ϕ ±
√

ϕ)ei arctan
√

ϕ, and z±̄ = (ϕ ±
√

ϕ)e−i arctan
√

ϕ (32)

The poles of q(−z) will simply require a sign change. We can combine all 8 poles in a compact notation:

zk = ±(ϕ ±
√

ϕ)e±i arctan
√

ϕ, (33)

which is shown in Fig. 2.

Figure 2: The location of the roots. This is a static copy, find the interactive HTML-document here.
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As we have figured out the residues at the poles, we now need to understand log2 zk terms. Using zk =
|zk|ei arg(zk), we get:

log2 zk = (log zk)2 = (log |zk| + i arg(zk))2 = log2 |zk| + 2i log |zk| arg(zk) − (arg(zk))2. (34)

log2 |zk| is the easiest to address because it is a constant across all poles. Remember that the poles, zk’s,
are at a, 1/a, ā, and 1/ā, each of which will have the same log2 |zk| value. Therefore, as we sum over the
residues, which alternate between +1 and −1 due, this constant term will drop out.

Let’s look at log |zk| arg(zk) term multiplied by the residues: Consider z0, which has a residue of +1. Its
radius inversion pair, z1, also has +1 residue, but |z1| = 1/|z0| and that causes the log |z1| = − log |z0|. These
two terms cancel each other. We can see the pairwise cancellation for all the remaining poles, therefore
log |zk| arg(zk) vanish up on summing over all the residues. We are down to single term, we we just need to
sum it up and write down our final equation:

I = 1
4πi

∮
c

dz (log z)2 8(z2 − 1)(z4 − 6z2 + 1)
z8 + 4z6 + 70z4 + 4z2 + 1 = 1

2
∑
zk

Residue(zk)

= 1
2

[ 7∑
k=0

Residue(zk)(arg(zk))2 =
3∑

k=0
(arg(zk))2 −

7∑
k=4

(arg(zk))2 = 2
(

arctan
√

ϕ
)2

+ 2
(

2π − arctan
√

ϕ
)2

]

= −2
(

π − arctan
√

ϕ
)2

− 2
(

π + arctan
√

ϕ
)2

= 2π2 − 4π arctan
√

ϕ

= 4πarccot
√

ϕ, (35)

which concludes the integration!
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