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Integral of the month: ∫ xαdx
x2−2βx+1

Abstract
An integral with branch cut.

Index Terms
Integral, Residue Calculus, Branch Cut

I. The domain of convergence
We want to compute the integral I =

∫ ∞
0 dx xα

x2−2βx+1 for a range of real valued parameters α and β.
Since the denominator is quadratic, we need to have α < 1 so that the integral converges. Additionally, if α
is an integer, the integral can be evaluated by partial fractions. Therefore, we will assume that α is not an
integer. Furthermore, in order for the integral to converge, we also require −1 < α. The other thing we have
to check is the poles of the denominator. We first upgrade real valued parameter x to a complex number z,
and define f(z):

f(z) ≡ zα

z2 − 2βz + 1 = zα

(z − z1)(z − z2) , (1)

where z1,2 = β ±
√

β2 − 1 as shown in Fig. 1.

Figure 1: The denominator has two roots: z1 and z2. The position these roots on the complex plane will
depend on the value of β. A few values of β are marked on the plot. This is a static copy, find the interactive
HTML-document here.

If the roots fall on the positive real x-axis, the integral will diverge. From the plot we observe that if
β < 1, the roots will not be on the positive x-axis. Therefore, the integral will be well defined for β < 1 and
−1 < α < 1.
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II. The key-hole contour
Due to the xα term with non-integer α, the integral has a branch cut. We can take the positive x-axis as

the cut.
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Figure 2: Key-hole contour to evaluate the integral. The dashed lines show the possible positions of the two
poles.

Using the residue theorem, we can write:∮
f(z)dz = 2πi (Res(f, z1) + Res(f, z2)) = 2πi

(
zα

1
z1 − z2

+ zα
2

z2 − z1

)
= πi√

β2 − 1

[(
β +

√
β2 − 1

)α

−
(

β −
√

β2 − 1
)α]

. (2)

On the left hand-side, the integrals over the circles CR and Cϵ vanish. We just need to figure out what
happens on C1,2. The integral on C2 is the original integral we are looking to solve. The one on C1 is∫

C1

dzf(z) =
∫

C1

dx
xαei2πα

x2 − 2βx + 1 = −
∫ ∞

ϵ

xαei2πα

x2 − 2βx + 1 = −ei2παI. (3)

Therefore, the final result is

I = πi√
β2 − 1(1 − ei2πα)

[(
β +

√
β2 − 1

)α

−
(

β −
√

β2 − 1
)α]

. (4)

III. Various interesting cases
Let us look at a few specific cases.

A. β = 0 case
The roots are z1,2 = ±i. The corresponding integral becomes:

I =
∫ ∞

0
dx

xα

x2 + 1 = πi

i(1 − ei2πα) [iα − (−i)α] = π

1 − e2πiα

[
eiπα/2 − e3πiα/2

]
= π

e−iπα − eiπα

[
e−iπα/2 − eiπα/2

]
= π sin(πα/2)

sin(πα) = π

2 cos(πα/2) . (5)
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B. β = −1/
√

2 case
The roots are {z1, z2} = {e3πi/4, e5πi/4}, and

√
β2 − 1 = 1/

√
2 The corresponding integral reads:

I =
∫ ∞

0
dx

xα

x2 +
√

2x + 1
= iπ

√
2

(1 − e2πiα)

[
e3πiα/4 − e5πiα/4

]
=

√
2π sin(πα/4)

sin(πα) . (6)

C. β = −1 case
This is a tricky case since the roots merge. We can either fall back onto the computation of residues with

higher order poles, or we can simply approach this limit carefully by setting β = −1 + ϵ to get z1,2 = −1 ± δ
where δ ≡

√
2ϵ is a small positive number. Equivalently, {z1, z2} = {−e−iδ, −eiδ} and

√
β2 − 1 = δ. Then

the integral becomes:

I =
∫ ∞

0
dx

xα

x2 + 2x + 1 = πi

δ(1 − e2πiα)eiπα
[
e−iδα − eiδα

]
= πα

sin(πα) . (7)

IV. Putting it all together
Not that the complete answer is already given in Eq.(4). One could simply plug in numbers and get the

answer. However, it requires surgical precision to compute the function due to the branch cut: if one is not
careful enough, s/he will cross the cut, and the result will be messed up due to multi-valued nature of the
functions. So let’s dive into the expression in Eq.(4) and simplify it very carefully.

A. 0 ≤ β < 1 case

In this range of β we will have z1 = β + i
√

1 − β2 ≡ eiθ where θ = arctan
[√

1−β2

β

]
, and z2 = β −

i
√

1 − β2 ≡ e2πi−iθ. z1 is in the first quadrant and z2 is in the fourth. Note that we defined the angle of z2
so that we don’t cross the branch cut. We can write I as

I = πi

i
√

1 − β2(1 − ei2πα)
[
eiθα − e2παi−iθα

]
= π√

1 − β2

sin [α(π − θ)]
sin(πα)

= π√
1 − β2

sin
{

α

(
π − arctan

[√
1−β2

β

])}
sin(πα) . (8)

B. −1 ≤ β < 0 case

In this range of β we will have z1 = β + i
√

1 − β2 ≡ ei(π−θ) where θ = arctan
[√

1−β2

|β|

]
, and z2 =

β − i
√

1 − β2 ≡ ei(π+θ). Note that we again defined the angle of z2 so that we don’t cross the branch cut.
z1 is in the second quadrant and z2 is in the third. We can write I as

I = πi

i
√

1 − β2(1 − ei2πα)
eiπα

[
e−iθα − eiθα

]
= π√

1 − β2

sin [α(θ)]
sin(πα)

= π√
1 − β2

sin
{

α arctan
[√

1−β2

|β|

]}
sin(πα) . (9)

C. β < −1 case
In this range of β we will have z1,2 = β ±

√
β2 − 1, which are both negative real numbers. We can write

I as

I = πi√
β2 − 1(1 − ei2πα)

eiπα
[(

|β| −
√

β2 − 1
)α

−
(

|β| +
√

β2 − 1
)α]

=
π

[(
|β| +

√
β2 − 1

)α

−
(

|β| −
√

β2 − 1
)α]

2
√

β2 − 1 sin(πα)
. (10)

V. Verifying with Mathematica
The results can be verified with Mathematica. Find the code here.

https://github.com/quarktetra/mathematica/find/main
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