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Integral of the month: ∫ dxsin2 x
x2

Abstract
Four different ways of evaluating this lovely integral!

Index Terms
Integral, Residue Calculus

We want to compute the integral I =
∫∞

−∞ dx sin2 x
x2 in various ways.

I. A complex contour integration
As it is typically done, we first upgrade real valued parameter x to a complex number z, and use the

following equality:

sin2 z

z2 =
(
eiz − e−iz

)2

−4z2 = −e2iz − 2 + e−2iz

4z2 = 1 − e−2iz

4z2 + 1 − e2iz

4z2 . (1)

We can evaluate the integrals of the terms on the right hand side using appropriate closed contours. eiz

term, for example, requires us to close the contour from above, as in Fig. 1, such that the imaginary part
of z is positive, which implies Re(iz) < 0. As R → ∞, the integral over the large circle vanishes.
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Figure 1: The complex contour in which the singularity at the origin is avoided by bending the curve around
it. It is closed from above to make sure exponential term, eiz, vanishes as R → ∞.

Let’s evaluate the integral of 1−e2iz

z2 over CU first.

IU ≡
∮

CU

dz
1 − e2iz

4z2

=
∫ ε

−R

dx
1 − e2ix

4x2 +
∫

εU,C

dz
1 − e2iz

4z2 +
∫ R

ε

dx
1 − e2ix

4x2 +
�����������∫ π

0
Ridϕeiϕ 1 − e2iReiϕ

4R2e2iϕ

=
∫ R

−R

dx
1 − e2ix

4x2 +
∫

εU,C

dz
1 − e2iz

4z2 , (2)

where the integral on the large circle vanishes in the R → ∞. The second term in the last line,
∫

εU,C
, is to

be evaluated on the upper part of the small circle in the clockwise direction, but we can flip its direction by
the change of variable z → −z ∫

εU,C

dz
1 − e−2iz

4z2 =
∫

εU,CC

dz
1 − e2iz

4z2 , (3)
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which will be useful later.
Let’s look at the second piece in Eq. (1), and integrate it over the contour Fig. 2.

CL
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Figure 2: The complex contour in which the singularity at the origin is avoided by bending the curve around
it. It is closed from below to make sure exponential term,e−iz , vanishes as R → ∞.

IL ≡
∮

CL

dz
1 − e−2iz

4z2

=
∫ ε

−R

dx
1 − e−2ix

4x2 +
∫

εL,CC

dz
1 − e−2iz

4z2 +
∫ R

ε

dx
1 − e−2ix

4x2 +
������������∫ π

0
Ridϕe−iϕ 1 − e−2iReiϕ

4R2e−2iϕ

=
∫ R

−R

dx
1 − e−2ix

4x2 +
∫

εL,CC

dz
1 − e−2iz

4z2 . (4)

Adding Eqs. (2) and (4) we get

IU + IL =
∫ R

−R

dx

(
1 − e−2ix

4x2 + 1 − e2ix

4x2

)
+
(∫

εU,CC

+
∫

εL,CC

)
dz

1 − e−2iz

4z2

=
∫ R

−R

dx
sin2 x

x2 +
∮

εCC

dz
1 − e−2iz

4z2 =
∫ R

−R

dx
sin2 x

x2 + 2πi

[
d

dz

1 − e−2iz

4

]
z=0

=
∫ R

−R

dx
sin2 x

x2 − π. (5)

We know that none of the closed contours we used enclose any poles which means IU + IL = 0. Therefore:∫ ∞

−∞
dx

sin2 x

x2 = π. (6)

II. Another complex contour integration

Note that the difficulty we had in the previous section can be traced back to the fact that we split the
pole at z = 0 so that it was kind of shared between two contours. At the end of the day, the parts came
together to give us a closed contour integral. We can get around this by shifting the contours downward as
in Fig. 3
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Figure 3: The complex semi-circles shifted downward by a small amount ϵ. One of the contours enclose the
pole and the other does not.

Now the top contour includes the pole and the bottom one excludes it. Evaluating and adding the contour
integrals we get:

IU ≡
∮

CU

dz
1 − e2iz

4z2 = lim
R→∞

∫ R

−R

dx
1 − e2ix

4x2 +
�������������

lim
R→∞

∫ π

0
Ridϕeiϕ 1 − e2iReiϕ

4R2e2iϕ

= 2πi

[
d

dz

1 − e−2iz

4

]
= π,

IL ≡
∮

CU

dz
1 − e−2iz

4z2 = lim
R→∞

∫ R

−R

dx
1 − e−2ix

4x2 +
�������������

lim
R→∞

∫ π

0
Ridϕeiϕ 1 − e2iReiϕ

4R2e2iϕ

= 0,

IU + IL = lim
R→∞

[∫ R

−R

dx
1 − e2ix

4x2 +
∫ R

−R

dx
1 − e−2ix

4x2

]
=
∫ ∞

−∞
dx

sin2 x

x2 = π. (7)

III. Fourier transform

If you have ever taken any Signals&Systems Engineering classes, or quantum physics classes, you will
remember that Fourier transform of a window function goes like sin w

w in the frequency domain. Coupling
this information with the Parseval’s identity, we can solve the integral in the time domain. Let’s go through
some definitions:

F (w) = 1√
2π

∫ ∞

−∞
dte−iwtf(t),

f(t) = 1√
2π

∫ ∞

−∞
dweiwtF (w). (8)

And the Parseval’s identity is easy to prove
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∫ ∞

−∞
dwF ∗(w)F (w) = 1

2π

∫ ∞

−∞
dw

∫ ∞

−∞
dt

∫ ∞

−∞
dt̃e−iw(t−t̃)f(t)f∗(t̃)

= 1
2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt̃

[∫ ∞

−∞
dwe−iw(t−t̃)

]
f(t)f∗(t̃),

= 1
2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt̃2πδ(t − t̃)f(t)f∗(t̃) =

∫ ∞

−∞
dt|f2(t)|. (9)

If we can find a function, f(t), Fourier transform of which gives sin w
w , we can evaluate

∫∞
−∞ dt|f2(t)| rather

than
∫∞

−∞ dx sin2 x
x2 , and Parseval’s identity ensures that the results will be the same. One can verify that the

follwing function is what we are looking for:

f(t) =
√

π

2 [θ(t − 1) − θ(t + 1)] , (10)

where θ(t) is the unit step function. f(t) is simply equals to 1 for −1 < t < 1 and 0 elsewhere. Using the
Parseval’s identity we get: ∫ ∞

−∞
dx

sin2 x

x2 =
∫ ∞

−∞
dt|f2(t)| = π

2

∫ 1

−1
dt = π. (11)

IV. A sneaky method
As you fool around with such integrals, you will develop various tricks to generalize them by inserting a

parameter inside the integrand. Consider the following object:

I(α) =
∫ ∞

−∞
dx

sin2 αx

x2 , (12)

which looks even harder to evaluate. How about dI
dα ? Let’s try:

dI(α)
dα

=
∫ ∞

−∞
dx

d sin2 αx

dα
x2 =

∫ ∞

−∞
dx

sin(2αx)
x

=
∫ ∞

−∞
dy

sin(y)
y

, (13)

where
∫∞

−∞ dy sin(y)
y is an easier integral to compute, and its value is π (see this post for various ways to

evaluate the integral.)
Since we know dI(α)

dα , we can integrate to get

I(α) =
∫ α

0
dα̃

dI(α̃)
dα̃

= απ + I(0). (14)

But we know that the integrand vanishes at α = 0, that is I(0) = 0, and the integral we are looking for is
at α = 1. So the result is ∫ ∞

−∞
dx

sin2 x

x2 = I(1) = π. (15)

There you have it, four different ways of evaluating this lovely integral.
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