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Integral of the month: sdz

Abstract
Three different ways of evaluating this lovely integral!
Index Terms
Integral, Residue Calculus, Branch Cut

We want to compute the integral I = ffooo dz% in various ways.

I. A COMPLEX CONTOUR INTEGRATION

As it is typically done, we first upgrade real valued parameter x to a complex number z and then construct
the contour in Fig. [T
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Figure 1: The complex contour in which the singularity at the origin is avoided by bending the curve around
it.

On the circle of radius ¢, z = e where § € [0,7]. And on the large circle z = Re!® where ¢ € [0,7]. We
can easily evaluate the following integral (in the limit € — 0 and R — 00):
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Note that the integral over the large circle vanishes as R — oo since eifle’? = g=RsinggiRcosé  Therefore,
by explicit evaluation, we see that I. = ffooo dr“— +im. But, from the theory of residues, we know that the
closed loop integral of a function is 0 if the contour does not enclose any poles. Therefore

/ dzs— = im, (2)
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and if we take the imaginary parts of the bothsides, we get

/ de20 — 1. (3)
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Side note: we evaluated the integral over the inner half circle explicitly. We could also see that it would give
im by observing that it is half of a circle that would have enclosed the singularity at the origin. Integral over
the full circle would give 27, and the integral over the upper-half gives im.
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II. PARAMETRIC LAPLACE TRANSFORM

One of my favorite tricks in integration is to introduce a parameter in the integrand and manipulate it to
simplify the integral. Let us insert an « parameter in sin:

I(a) = / " gpnlor) (4)
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Let us apply a Laplace transform with respect to a to be followed by the inverse Laplace transform
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III. DIRECT LAPLACE TRANSFORM

Here is a reminder on the definition of the Laplace transform:
F(s)=21f) = [ dee " f(a), (6)
0

From the definition, we can see that we can create a % term in the integrand if we simply integrate left side

from s to oo:
/:O dsF(3) = /OOO dx UOO dge—gw] fz). = /OOO dxe—sw@. (7)

Therefore, if we have an expression of the form f(z)/x, we can transform it as [~ d5F(3). In our case

f(z) =sinz and F(s) = H% Using the property above we get
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Note that I, at s = 0 is half of the integral we are looking for: [* da®% = 2 [ dzS2Z Doubling the
result at s = 0 yields:

oo

= m/2 — arctan s. (8)
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I =2y =m—2arctan(0) =« 9)

There you have it, three ways of evaluating this lovely integral.
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