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Integral of the month: ∫ dx
xn+1

Abstract

Branch cuts are your friends. You can have fun with them!

Index Terms

Integral, Residue Calculus, Branch Cut

We want to compute the integral I =
∫ ∞

0
dx

xn+1 where n is an integer. As it is typically done, we first
upgrade real valued parameter x to a complex number z, and define f(z):

f(z) ≡ 1
zn + 1 . (1)

f(z) has n poles at zk = e
πi(1+2k)

n with 0 ≤ k < n.

Figure 1: The location of the roots for n = 5. This is a static copy, find the interactive HTML-document
here.

Let’s be extravagant and solve the problem with three different methods.

I. A sneaky method

We need to decide on the complex contour. It needs to include the real line from 0 to ∞, and we need to
come back to 0 to close the loop. Since we have xn term, if we return to the origin at an angle of 2π

n , i.e.,
z = re

2πi
n , the nth power will remove the phase and will leave behind rn. So, we can try the contour in Fig

2.
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z = re
2πi
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Figure 2: The contour encloses only one pole, which is z1 = e
iπ
n . The return path is selected so that zn is a

real number.

∮
f(z)dz =

∫
γ0

dzf(z) +
∫

γR

dzf(z) +
∫

γ1

dzf(z) = 2πiRes(f, z1)

=
∫ R

0

dx

xn + 1 + i

∫ 2π
n

0
dθeiθ R

Rneinθ + 1 + ei 2π
n

∫ 0

R

dx

xn + 1

= (1 − ei 2π
n )

∫ R

0

dx

xn + 1 + i

∫ 2π
n

0
dθeiθ R

Rneinθ + 1 . (2)

It is easy to show that the angle integral will vanish as R → ∞. This is because
∣∣∣ R

Rneinθ+1

∣∣∣ → 1
Rn−1 → 0 for

large R. We can simplify the factor in front of the integral as follows:

(1 − ei 2π
n ) = ei π

n

(
e−i π

n − ei π
n

)
= −2iei π

n sin(π

n
). (3)

Putting it back into Eq. (2) gives ∫ ∞

0

dx

xn + 1 = −πRes(f, z1)
ei π

n sin( π
n )

. (4)

All there is left is to compute the residue of f(z) at z = z1 = e
iπ
n :

Res(f, z1) = lim
z→z1

z − z1

zn + 1 = lim
z→z1

1
d

dz (zn + 1)
= 1

nzn−1
1

= e
−iπ(n−1)

n

n
, (5)

where we used L’Hôpital’s rule. Inserting the result into Eq. (4) we get∫ ∞

0

dx

xn + 1 = − πe
−iπ(n−1)

n

ei π
n n sin( π

n )
= π

n sin( π
n ) , (6)

which is the final answer.

II. A typical method

When n is even, we can extend the lower limit of the integral from 0 to −∞ and divide the result by 2.
We can try the contour in Fig 3.
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Figure 3: The contour encloses all the poles on the upper half.

It may look like we got ourselves into a lot of work as we will need to compute all the residues for the poles
in the upper half and add them up. Maybe, it won’t be as hard as it looks. We do this for fun, anyways.
One trick we will use is this: since zn

j + 1 = 0, we have zn−1
j = zn

j

zj
= − 1

zj

I = iπ

n
2 −1∑
j=0

Res(f, zj) = −iπ

n
2 −1∑
j=0

1
nzn−1

j

= −iπ

n
2 −1∑
j=0

zj = −ie
πi
n

π

n

n
2 −1∑
j=0

e
2πij

n = −ie
πi
n

π

n

1 − e
2πin/2

n

1 − e
2πi

n

= π

n

2
ie

−πi
n (1 − e

2πi
n )

= π

n

2
i(e −πi

n − e
πi
n )

= π

n

2
2sin( π

n ) = π

n sin( π
n ) (7)

III. A fancy method

Do you dislike branch cuts? Maybe, just maybe, you just don’t understand and appreciate them. They
usually appear naturally if the functions involve fractional powers or logarithms. Let’s introduce a logarithm
into our problem by hand

f̃(z) ≡ ln(z)
zn + 1 , (8)

and try to evaluate this contour integral:

IC =
∮

C

dzf̃(z). (9)

We need to introduce a branch cut for the logarithm and promise not to cross it. Let’s take it to be the
positive real axis and define the contour:
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Figure 4: Key-hole contour to evaluate the integral. The dashed line shows the possible positions of the
poles.

We can now evaluate the integral

IC =
∮

C

dzf̃(z) = 2πi

n−1∑
j=0

Res
(
f̃(z), zj

)
= 2πi

n−1∑
j=0

ln(zj)
nzn−1

j

= −2πi

n−1∑
j=0

zj ln(zj)
n

= −2π2

n2

n−1∑
j=0

(1 + 2j)e
πi(1+2j)

n

= −2π2

n2 e
πi
n

n−1∑
j=0

e
2πij

n + 2
n−1∑
j=0

je
2πij

n

 = 4π2

n
e

πi
n

n−1∑
j=0

je
2πij

n = −4π2

n2 e
πi
n

n

2πi

 d

dα

n−1∑
j=0

e
2παij

n


α=1

= −4π2

n2 e
πi
n

n

2πi

[
d

dα

(
1 − e2πiα

1 − e
2παi

n

)]
α=1

= −4π2

n2 e
πi
n

n

2πi

−2πi

1 − e
2πi

n

= − 2iπ2

n sin( π
n ) . (10)

It is not obvious yet how this contour integral ties to our original one, I. It will be clearer as we chop the
integral into pieces as follows:∮

f̃(z)dz =
∫

C1

dzf̃(z) +
∫

Cϵ

dzf̃(z) +
∫

C2

dzf̃(z) +
∫

CR

dzf̃(z). (11)

There is really nothing exciting for
∫

CR
dzf̃(z) since it will be bounded by 2π lnR

R . It will vanish as R → ∞.
The integral over the small circle

∫
Cϵ

dzf̃(z) will be bounded by ϵ ln(ϵ), hence it will too vanish as ϵ → 0.
The magic happens with the integrals over the segments C1,2. On C1, z = xeiϵ, i.e., it is hovering just above
the real axis. On C2, z = xei(2π−ϵ), i.e., it is hovering just below the real axis. Note the 2π shift in the
phase, which came from our promise of not crossing the branch cut. Putting this inside ln will make the big
difference.∮

f̃(z)dz = lim
ϵ→0

∫ ∞

0
dx

ln(xeiϵ)
xn + 1 + lim

ϵ→0

∫ 0

∞
dx

ln(xei(2π−ϵ))
xn + 1 =

∫ ∞

0
dx

ln(x)
xn + 1 −

∫ ∞

0
dx

ln(x) + 2πi

xn + 1

= −2πi

∫ ∞

0

dx

xn + 1 = − 2iπ2

n sin( π
n ) , (12)

from which we get ∫ ∞

0

dx

xn + 1 = π

n sin( π
n ) . (13)
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There you have it, three ways of evaluating this lovely integral.
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