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A crash course on JFETS

Abstract
A quick intro to JFET equations.

Index Terms
JFET

I. A crash course on JFETs
JFETs typically have very low current noise and this property makes them a great option for low noise

amplifiers. Before we go into the details of the design, let take a quick look at the physics of the device.

II. The geometry
The junction field effect transistor is a three terminal device as illustrated in Fig. 1. The current between

two of the terminals, named as source and drain, flows through called the “channel” which may be made
of either a P-type or an N-type. The third terminal, called the gate, is used to apply a voltage across the
channel to control the amount of current flow.
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Figure 1: Operation of the jFET under reverse gate bias. Note that the gate terminals are connected
internally. As the gate bias gets more negative, the depletion regions will pinch the channel completely.
In that case the drain-source current will be fixed and independent of the drain source voltage.

email: quarktetra@gmail.com
Find the interactive HTML-document here.

mailto:quarktetra@gmail.com
https://tetraquark.netlify.app/post/jfetcrashcourse/jfetcrashcourse/index.html


2

jFETs are unipolar devices, in which the current is carried by only one type of carriers, electrons or holes
depending on the channel type, not both at the same time. This is in contrast with bipolar transistors that
make use of both holes and electrons at the same time to conduct current. The Field Effect Transistor
gate current is much smaller compared to bipolar transistors, and therefore they have a much larger input
impedance. Since drain current is controlled by the gate voltage, jFETs can be modeled as a voltage controlled
current source. Figure 2 shows the circuit symbol for N and P channel jFETs.
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Figure 2: Circuit symbols for N and P channel jFETs.

III. I-V curves
The Gate-Drain junction of the jFET is under reverse-bias. This creates the depletion region that is free

of charge carriers. The size of the depletion region will increase as VG becomes more negative reducing the
drain current. Similarly, after the "pinching point’ ’, for large enough VDS , further increasing VDS will not
increase the drain current since the device is now in the saturation mode. This is because the additional
voltage will be dropped across the depletion region. The I-V characteristics of the device is shown in Fig. 3.

Figure 3: I–V characteristics and output plot of an n-channel JFET .
Credit:[Wikipedia](https://en.wikipedia.org/wiki/JFET)

The most important curve is the one on the right hand side of the Fig. 3 which shows the drain current
in the saturation region for a given value of the gate voltage. That curve is quadratic in nature, which we
will derive later, and is approximately given by

ID = IDSS

(
1 − VG

VP

)2
, (1)

where VP is the pinch-off voltage and IDSS is the current at VG = 0.
The derivation of Eq. (1) is a bit involved, but we can at least provide a sketch of it. The first thing

we will need the depth of the depletion layer, and that can be computed as in the standard p-n junction
analysis. When p and n type semi-conductor meet at an interface, electrons and holes will move across the
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interface and the p type material will build up excess negative charges and the n type material will build
positive charges, as shown in Fig. 4
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Figure 4: A depletion region forms around the interface of p and n type semiconductors. On the top is the
geometry of the device, on the bottom is the charge density.

Given the charges around the interface, we can calculate the electric field using the Gauss’ law

∇ · E = ρ

εs
=⇒ dE

dx
= −qNA

εs
, (2)

where we made use of the fact that there is electric field only along the x axis. This equation applies to the
region −xp ≤ x ≤ 0 and q is the charge of an electron and NA is the acceptor number density. We can solve
for the electric field by simple integration:

E(x) = −qNA

εs
(x + xp), −xp ≤ x ≤ 0. (3)

Same differential equation applies to the region on the right hand side: 0 ≤ x ≤ xn, and the solution is:

E(x) = −qND

εs
(xn − x), 0 ≤ x ≤ xn, (4)

where ND is the donor number density. The electric field as to be continuous at the interface x = 0, and
enforcing the continuity relates xp to xn:

NAxp = NDxn. (5)
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We can integrate one more time to get the potential difference:

V (x) = qNA

2εs
(x + xp)2, −xp ≤ x ≤ 0, (6)

where we dropped the integration constant by defining V (−xp) = 0 as the reference voltage. Let’s repeat
for the right side:

V (x) = Vbi − qND

2εs
(xn − x)2, −xp ≤ x ≤ 0, (7)

where we introduced the integration constant Vbi since we had already declared the reference voltage point.
Vbi is the built in voltage between the points −xp and xn, and it is about 0.2V for Ge and 0.8V for Si based
semiconductors. We now impose the continuity of the voltage across the interface by setting Eqs. (6) and
(7) equal to each other at x = 0, to get:

Vbi − qND

2εs
(xn)2 = qNA

2εs
(xp)2 (8)

We can make use of Eqs. (5) to solve for xn and xp and add them up to get the total depletion width:

xn =

√
2Vbiεs

q

NA

ND(NA + ND)

xp =

√
2Vbiεs

q

ND

NA(NA + ND)

D = xn + xp =

√
2Vbiεs

q

(
1

ND
+ 1

NA

)
. (9)

The most important observation here is that the width of the depletion is proportional to
√

Vbi. Note that
this derivation assumed there is no externally applied voltage across the diode terminals. When there is a
reverse bias applied, we need to add that to Vbi. The gate-channel junction is just like a diode, and the
depletion width will be set by the applied gate voltage.

How does the depletion length enter into the current equation? At the simplest level, it reduces the cross
section of the channel. A channel of original height H will reduce to the height H − D. The depletion width
can be as large as the height, which will pinch off the channel. From Eq. (9), we can calculate the value of
the gate voltage to pinch the channel when VDS = 0:

D =

√
4(Vbi − VP )εs

qND
= H, =⇒ VP = Vbi − qNDH2

4εsq
, (10)

where we assumed ND ≃ NA. For a typical set of input parameters, VP is around −2.7V .
We are going to relate the depletion width to the drain-source current using the drift speed of the charge

carriers. The current density due to the drift is given by

J = qµNDE = −qµND
dV

dx
, . (11)

The total drain current is

ID = AJ = −W (H − D)qµND
dV

dx
= −WH

(
1 − D

H

)
qµND

dV

dx

= −WH

(
1 −

√
4(Vbi − (VG − V ))εs

qNDH2

)
qµND

dV

dx

= −WH

1 −

√
Vbi − (VG − V )

Vbi − VP

 dV

dx
, (12)
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where used Eq. (10), and also defined µ as the average mobility of the carriers. A is the cross-sectional area
of the channel given by W ×(H −D) where W is the dept of the channel in the perpendicular direction. Note
that ID is a constant and therefore has no x dependence, and we can rewrite the integral in the differential
form as follows:

IDdx = −WHqµND

1 −

√
Vbi − (VG − V )

Vbi − VP

 dV . (13)

Integrating from 0 to L on the left, and from 0 to V (L) = VD on the right we get:

ID = −WHqµND

L

∫ VD

0

1 −

√
Vbi − (VG − V )

Vbi − VP

 dV

= g0

(
VD − 2

3(Vbi − VP )
[(

VD + Vbi − VG

Vbi − VP

) 3
2

−
(

Vbi − VG

Vbi − VP

) 3
2
])

, (14)

where g0 = W HqµND

L is the conductivity constant. We can approximate this complicated function in two
zones. In the linear zone, VD is relatively smaller, and we can expand Eq. (14) in powers of VD and keep
the first term:

ID = g0VD

[
1 −

(
Vbi − VG

Vbi − VP

) 1
2
]

. (15)

On the other limit, we can see that ID has a maximum value at VD = VG − VP , which can be shown by
taking the derivative of Eq. (14) with respect to VD and setting it to zero. In order to find the dependence
on VG in the saturation region, it is best to make the approximations before evaluating the integral in Eq.
(14):

ID = −WHqµND

L

∫ VD

0

1 −

√
Vbi − (VG − V )

Vbi − VP

 dV = −g0

∫ VD

0

1 −

√
Vbi − V p − (VG − VP − V )

Vbi − VP

 dV

= −g0

∫ VD

0

(
1 −

√
1 − VG − VP − V

Vbi − VP

)
dV ≃ − g0

Vbi − VP

∫ VD

0
(VG − VP − V ) dV

= − g0

Vbi − VP

(
VG − VP − VD

2

)
VD, (16)

where we crudely treated the fraction under the square root as a small number. For any given VG the current
saturates at VD = VG − VP . Plugging this in to Eq. (16), we have:

ID(VG) = IDSS

(
1 − VG

VP

)2
, (17)

where we dumped everything in front into IDSS . This completes the sketch of the proof.

IV. Small signal analysis

Amplifiers are typically operated in the saturation region which fixes the transconductance of the device.
As a small signal is added to the circuit coupled to the gate terminal, it will change the gate voltage by a
small amount: VG → VG + vG. This will result in a change in the drain current. For a careful analysis, we
are going to reserve the capital letters for the DC, bias quantities and small letters for signals. Starting from
Eq. (17), we can see the effect of shifting the gate voltage:
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ID (VGS + VGS) = IDSS

(
1 − VGS + VGS

VP

)2
≃ IDSS

(
1 − VGS

VP

)2
− 2IDSS

VP

(
1 − VG

VP

)
VGS

= ID (VGS) + gmVGS , (18)

where gm is the transconductance defined as

gm ≡ −2IDSS

VP

(
1 − VG

VP

)
. (19)

Equation (18) shows that the drain current is the sum of the bias current set by the gate bias voltage (VG)
and the part controlled by the deviations in the gate voltage (vG). In this mode of operation, the JFET is
nothing but a voltage controlled current source and it can be represented symbolically as in Fig. 5.
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Figure 5: Small signal AC model for JFETs. rG is typically very large which further simplifies the analysis.

V. Amplifiers

Let’s get a bit more practical and build some experience in analyzing simple amplifier circuits featuring
jFETs.

A. Source follower

Let us start with something extremely simple as in Fig. 6.
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Figure 6: A simple source follower amplifier.

The operating point of the JFET is found by removing the input voltage and analyzing the I-V curve of
the device. One the operating point is is calculated, the DC sources are turned off and the AC is added.
Provided that the DC operating point is designed to be in the saturation region, the jFET current is then
linearly related to the input signal. The superposition of sources is illustrated in Fig. 7.
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Figure 7: Left: DC equivalent circuit, right: AC equivalent circuit .

The DC circuit is as simple as it gets since the gate-source resistance, which is shown faded gray is
practically infinite: there is no gate current. This tells us that VGS = −VS = −IDRS , i.e., the gate bias is
created by the drain current, which is the reason why such circuits are referred to as “self-biased.’ ’ Using
the formula in Eq. (17) with VGS = −IDRS we get:

ID(VG) = IDSS

(
1 − VG

VP

)2
= IDSS

(
1 + IDRS

VP

)2
, (20)

which is a quadratic equation in ID with the following solution:

ID = −2IDSSRS + V 2
P − V

3/2
P

√
VP − 4IDSSRs

2IDSSR2
s

. (21)

Lets punch in some numbers: IDSS = 10 mA, VP = −2V , RS = 200Ω to get ID = 3.8 mA and VGS = −0.76V .
We can comfortably satisfy the saturation condition, VDS > VG − VP , if VCC > 2V .

The AC analysis is also simple. We add up the voltages in the gate loop:

−vin + vgs + vout = 0 = −vin + vgs + gmvGSRs =⇒ vin = vgs (1 + gmRS) . (22)

And the output voltage is:

vout = gmvGSRs. (23)

The gain is the ratio:

G = vout

vin
= gmRs

1 + gmRs
. (24)

For large values of gmRs, the gain will be close to unity. What we have accomplished is taking a signal from
a source which possibly had a large impedance and cloned it over to create a signal with lower impedance.
In fact, we look from the load side back to the circuit, the impedance will be Rs// 1

gm
which can be made

much smaller than the impedance of the original input signal.

B. Common source amplifier
Let us try something that will really give us some amplification. Figure 8 shows a common source circuit.
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Figure 8: A simple common source amplifier.

We go through the same exercise of finding the operating point of the JFET by removing the input voltage,
left panel in Fig. Fig. 9, and analyzing the I-V curve of the device. We then turn off the DC sources and
add the the AC signal.
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Figure 9: Common source amplifier. Left: DC equivalent circuit, right: AC equivalent circuit .

The DC analysis is identical to the source follower case. With the same input numbers: IDSS = 10 mA,
VP = −2V , RS = 200Ω, and RD = 3KΩ, we get ID = 3.8 mA and VGS = −0.76V . The voltage across RD is
VRD

= IDRD = 11.4V . The power supply voltage should be such that VCC = VRD +VDS ≥ VRD +VGS −VP .
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The AC analysis is similar to the source follower case: We add up the voltages in the gate loop:

−vin + vgs + vout = 0 = −vin + vgs + gmvGSRs =⇒ vin = vgs (1 + gmRS) . (25)

And the output voltage is:

vout = −gmvGSRD. (26)

The gain is the ratio:

G = vout

vin
= − gmRD

1 + gmRs
. (27)

Entering numerical values into Eq. (19) we get gm = 6.2 mS, and the amplification factor G = −8.29.
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