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Johnson Noise

Abstract
A derivation of Johnson noise.

Index Terms
Johnson noise

I. Johnson–Nyquist noise
Johnson–Nyquist noise (also known as thermal noise, Johnson noise, or Nyquist noise) is the electronic

noise generated by the thermal agitation of the charge carriers. This noise exists even when there is no applied
voltage. Thermal noise in an ideal resistor is approximately flat. This type of noise was first discovered and
measured by John B. Johnson [1], and was later explained by Nyquist[2]. Johnson-Nyquist theorem states
that the mean square voltage across a resistor in thermal equilibrium at temperature T is:

⟨V 2⟩ = 4RkT∆f, (1)

where R is the value of the resistance. For complex impedances, the thermal noise is driven by the real part:

⟨V 2⟩ = 4ℜ{Z}kT∆f. (2)

And finally, if the frequency band is wide, the multiplying factor, ∆f needs to be replaced by an integral
over the frequency range of interest:

⟨V 2⟩ = 4kT

∫
dfℜ{Z(f)}. (3)

A. Transmission line derivation
There is a relatively simple derivation of this theorem based on transmission line principles[2]. Consider

a resistor R connected to a matched transmission line, which has the characteristic impedance Zc = R. The
line is terminated with another resistance of value R. The setup is illustrated in Fig. 1
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Figure 1: A resistor coupled to a matched transmission line terminated with a resistor of the same value.
The whole circuit is kept at a constant temperature T .

The transmission line supports propagating electromagnetic waves, and the energy of these waves are
given by the Bose-Einstein statistics:

⟨E⟩ = ℏω

e
ℏω
kT − 1

. (4)
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When ℏω ≪ kT , we get ⟨E⟩ = kT . The rate of energy transmission in a frequency band ∆f is kT∆f , which
is also the power delivered to the load. Therefore the power the load gets is kT∆f . In terms of the electrical
quantities, the power is given by ⟨I2⟩R. Furthermore, we know that I = V/(2R) due to the resistors in
series. Combining all of these pieces, we get the result in Eq.(1).

B. Microscopic derivation

We are going to follow the method from [3]. Let’s look at a resistor R with N electrons per volume; length
l; area A, and carrier relaxation time τc. The voltage is given by

V (t) = RI(t) = RAj(t) = RANe⟨u(t)⟩, (5)

where I is the current, j is the current density and ⟨u(t)⟩ is the drift velocity. The drift velocity is the
average of the individual velocities:

⟨u(t)⟩ = 1
ANl

∑
i

ui(t), (6)

where the summation is evaluated over all the electrons with ui being individual electron velocity, and the
factor in front is the total number of electrons in volume Al. Putting this back in Eq. (5) yields

V (t) = Re

l

∑
i

ui ≡
∑

i

Vi(t), (7)

where we defined

Vi = Re

l
ui (8)

Since ui is a random variable, so is Vi(t) and we can define an autocorrelation function for them:

Cij(τ) = ⟨Vi(t)Vj(t + τ)⟩ ≡ δij⟨V 2
i ⟩e−|τ |/τc . (9)

The autocorrelation function for the total voltage becomes

CV (τ) ≡ ⟨V (t)V (t + τ)⟩ =
∑

ij

⟨Vi(t)Vj(t + τ)⟩ =
∑

ij

Cij(τ) =
∑

i

⟨V 2
i ⟩e−|τ |/τc

= R2e2

l2

∑
i

⟨u2
i ⟩e−|τ |/τc = R2e2NA

l
⟨u2⟩e−|τ |/τc , (10)

where we defined the average u2 over electron velocities as follows:

⟨u2⟩ = 1
NAl

∑
i

⟨u2
i ⟩. (11)

Furthermore, we know that in a thermal bath of temperature T , the average kinetic energy of particles are
given by the following relation:

1
2m⟨u2⟩ = kT

2 , (12)

which implies that ⟨u2⟩ = kT/m. Plugging this back into Eq. (10), we get the final expression for the
correlation:

CV (τ) = R2e2NA

l

kT

m
e−|τ |/τc . (13)

In order to relate the correlation function CV (τ) to spectral density function, S(f), we need to do some
calculus and prove the Wiener–Khinchin theorem. Since this theorem applies to generic random variables,
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let us consider a random variable x(t) which evolves with time. The auto correlation function is defined as:

C(τ) = ⟨x(t)x(t + τ)⟩. (14)

The Fourier transform of C(τ) is defined as

Ĉ(ω) =
∫ ∞

−∞
dτe−iωτ C(τ). (15)

Let us define the truncated Fourier transform of x(t) as

x̂T (ω) =
∫ T

2

− T
2

dtx(t)e−iωt, (16)

and the truncated spectral power density as

ST (ω) = 1
T

⟨|x̂T (ω)|2⟩. (17)

The spectral power density is the limiting case of ST (ω):

S(ω) = lim
T →∞

ST (ω) = lim
T →∞

1
T

⟨|x̂T (ω)|2⟩. (18)

The Wiener-Khinchin Theorem states that if the limit in Eq. (18) exists, then the spectral power density
is the Fourier transform of the the auto correlation function, i.e., the following equality holds:

S(ω) =
∫ ∞

−∞
dτe−iωτ C(τ). (19)

We start from the average of |x̂T (ω)|2

⟨|x̂T (ω)|2⟩ =
∫ T

2

− T
2

∫ T
2

− T
2

dt′dt⟨x(t′)x(t)⟩e−iw(t′−t) =
∫ T

2

− T
2

∫ T
2

− T
2

dt′dtC(t′ − t)e−iω(t′−t). (20)

Note that C(t′ − t)e−iω(t′−t) depends only on the difference of the parameters.

The argument of the function begs for a change of coordinates:

u = t′ − t, and v = t + t′, (21)

and the associated inverse transform reads:

t′ = u + v

2 , and t′ = v − u

2 . (22)

This transformation will rotate and scale the integration domain as shown in Fig. 2.
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Figure 2: The integration domain in the t − t′ domain (left) and u − v domain(right). Since there is no v
dependence, v integration gives the height of the green and blue slices.

The equation of the top boundary on the right can be written as v = T −u, and on the left as $ v= T+u$.
We can actually combine them as v = T − |u|. We can do the same analysis for the lower boundaries to see
that the height of the slices at a given u is 2(T − |u|). This will help us easily integrate v out as follows:

I =
∫ T

2

−T
2

∫ T
2

−T
2

dt′dtf(t′ − t) =
∫∫

Su,v

∣∣∣∣ ∂(t, t′)
∂(u, v)

∣∣∣∣ dvduf(u)

=
∫ T

−T

2(T − |u|) × 1
2dvduf(u) =

∫ T

−T

duf(u)(T − |u|), (23)

where
∣∣∣ ∂(t,t′)

∂(u,v)

∣∣∣ = 1
2 is the determinant of the Jacobian matrix associated with the transformation in Eq. (22).

Therefore, setting u = τ , we get

|x̂T (ω)|2 =
∫ T

−T

dτe−iωτ C(τ)(T − |τ |). (24)

Taking the average we have the required result:

S(ω) = lim
T →∞

ST (ω) = lim
T →∞

1
T

⟨|x̂T (ω)|2⟩

= lim
T →∞

1
T

∫ T

−T

dτe−iωτ C(τ)(T − |τ |) =
∫ ∞

−∞
dτe−iωτ C(τ), (25)

which completes the proof.
We can now apply it to the correlation function defined in Eq. (13):

Ss(ω) = 2
∫ ∞

−∞
dτe−iωτ R2e2NA

l

kT

m
e−|τ |/τc = 4R2e2NA

l

kT

m
ℜ

{∫ ∞

0
dτe− τ

τc
(iωτc+1)

}
= 4R2e2NA

l

kT

m
ℜ

{
τc

1 + iωτc

}
= 4R2e2NA

l

kT

m

τc

1 + (ωτc)2 , (26)

where we are dealing with the single-sided spectral density, Ss, which is defined for the positive frequencies
and it differs by a factor of 2 to yield the same energy when integrated. The order of the relaxation time τc

is typically 10−13s, and for low enough frequencies we have ωτc ≪ 1.
In order to eliminate τc in favor of a more familiar electrical quantity, we need to do some more computation
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using the drift velocity equation:

m

(
d

dt
+ 1

τc

)
⟨u⟩ = eE, (27)

where E is the electric field. The steady state solution of Eq. (27) is simply ⟨u⟩ = eEτc/m. The corresponding
conductivity can be written as

σ = j

E
= Ne⟨u⟩

E
= Ne2τc/m, . (28)

which implies τc = mσ
Ne2 . Plugging this back into Eq. (26) and using R = l

σA , we get the final version of the
Johnson-Nyquist formula as in Eq. (1).
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