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Computing joint confidence intervals

Abstract
Assume you have two data sets from two independent runs. In each run you have an evaluation group to
be compared against the baseline. You can compute the confidence interval for the difference in each data
set, however, there may be reasons you do not want to combine the two data sets to compute and overall
confidence interval. Then how would you combine statistics you get from each run to compute an overall
confidence interval? That is the question we want to address.
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I. Introduction
The goal is to combine information from separate experimental runs to quote a single number to assess

the difference of two groups in the data. This would be a case where one cannot combine the data sets due
to confounding factors. We will discuss two ways of combining statistics:

• Computing joint p-values,
• Computing joint confidence intervals.

II. Sampling statistics
The end goal of statistics is to estimate the true values of the population parameters, such as the mean

value µ and the variance σ2. We try to get a sense of what µ could be by pulling N samples from the
population and studying it. Each sample is a random variable, Si, and we can compute their average

S̄ = 1
N

N∑
i=1

Si. (1)

S itself is a random variable: it will be different if you pick up another set of N samples. We can also compute
its expected value

E[S̄] = 1
N

N∑
i=1

E[Si] = µ, (2)

and its variance

Var[S̄] = 1
N2

N∑
i=1

Var[Si] = σ2

N
. (3)
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Furthermore, by central limit theorem, we know that for large N S̄ will be normally distributed, denoted as

S̄ ∼ N
(

µ,
σ2

N

)
. (4)

III. p-Values
The P value is the probability of obtaining a result equal to or larger than what was actually observed

assuming the the null hypothesis is true. It does not give the probability of the null hypothesis is true or
not. Figure 1 illustrates the p−value.

p−value

observed data

Figure 1: Illustration of p−value.

Such a number can be computed for any distribution, and it is supposed to be compared against α, which
sets how extreme the data must be for the null hypothesis to be rejected. For example, for α = 5%, p < 0.05
will result in the rejection of the null hypothesis.

A. Pooling p−values
A way of pooling p−values is proposed in [1] as a harmonic sum

1
p̄

=
∑n

i=1
Ni
pi∑n

i=1 Ni
, (5)

where Ni’s are the samples sizes, and pi’s are the individual p−values computed for each experiment, and
n is the number of experiments to be pooled. For equal sample sizes, this simplifies to

1
p̄

=
∑n

i=1
1
pi

n
. (6)

This is will result in a single number that will represent the results combining from all experimental runs.

IV. Confidence intervals
When the true values of the population parameters, µ and σ2 are unknown, we can replace them with the

sample statistics µ̂ and σ̂2

S̄ ∼ N
(

µ̂,
σ̂2

N

)
. (7)
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We are trying to estimate µ and σ2 based on the data we sample. This is illustrated in Fig. (2).

Figure 2: Population vs Sample statistics. Image taken from [UF Biostatistics text
book](https://bolt.mph.ufl.edu/6050-6052/unit-1/)

Equation (7) tells us that the sample mean value, µ̂, will vary from as we get another set of N samples.
And we do not necessarily know its relative position with respect to the population mean µ. We want to
create an interval around the µ̂ such that we can estimate whether µ will happen to be in that interval. It
is important to notice that this is more about creating a procedure to create an interval which, if repeated,
will contain the population mean value µ. Assume you have a method of creating confidence intervals(CI),
say with 95% confidence, which we will discuss later, below is what it means:

• You pull N samples and compute the interval with the data.

– µ is not guaranteed to be in the interval.
– You cannot say it will be in the interval with 95% probability. It is either in or out. This is not

probabilistic.

• You go back and pull N new samples.

– Note that you will have a new µ̂ and a new confidence interval. µ may or may not be in it.

• If you repeat the process many times, if your method of computing intervals is correct, 95% of the
intervals you computed will include the true value µ.

• The process is illustrated in Fig 3.
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Figure 3: Repeting a 95% confidence interval computation 20 times will result in CIs containing the popula-
tion parameter 19 out of 20 times. Image taken minitab [blog](https://blog.minitab.com/blog/adventures-
in-statistics-2/understanding-hypothesis-tests-confidence-intervals-and-confidence-levels).

To compute the confidence intervals, it is convenient to define the following random variable:

Z = S̄ − µ̂
σ̂√
N

. (8)

If the sample size is large (N >∼ 30), this particular random variable will have standard normal distribution1.
A confidence level of c corresponds to a z∗ value such that the area under the standard normal distribution
between −z∗ and z∗ is c. Equivalently, the area outside on each side will be 1−c

2 = α
2 , where α ≡ 1 − c.

Take an example of 95% confidence level, which yields α = 0.05. The value of z∗ in this case will be 1.96 so
that 2.5% of the total area lies under the tails, i.e., |z| > 1.96. Reverting Eq. (8) shows that 95% CI is from
µ̂ − 1.96 σ̂√

N
to µ̂ + 1.96 σ̂√

N
. Figure 4 shows this for generic c.

1for N <∼ 30, it will be t-distribution. Here we will assume sample size is large enough
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µ̂− zα
2

σ̂√
N

µ̂+ zα
2

σ̂√
N

µ̂

Area = 1−c
2 Area = 1−c

2Area = c

CI

Figure 4: Illustration of confidence intervals with confidence level of c.

A. Pooling multiple confidence levels

Assume you have two sets of data, and you can compute µ̂, σ̂ and the corresponding CIs for each set of
data. How would you combine these two sets to produce joint CIs? We can do this by pooling the estimates
as follows:

S̄ = N1S̄1 + N2S̄2

N1 + N2
, (9)

where subscripts label the data sets. S̄ is yet another normal random variable, and we can compute its
expected value as

E[S̄] = N1µ̂1 + N2µ̂2

N1 + N2
, (10)

and its variance:

Var[S̄] = N2
1 Var[S̄1] + N2

2 Var[S̄2]
(N1 + N2)2 =

N2
1

σ̂2
1

N1
+ N2

2
σ̂2

2
N2

(N1 + N2)2 = N1σ̂2
1 + N2σ̂2

2
(N1 + N2)2 . (11)

Therefore, the pooled estimator becomes

S̄ ∼ N
(

N1µ̂1 + N2µ̂2

N1 + N2
,

N1σ̂2
1 + N2σ̂2

2
(N1 + N2)2

)
, (12)

which completely defines the joint distribution. One can easily compute the corresponding CI as[
N1µ̂1 + N2µ̂2

N1 + N2
− z α

2

√
N1σ̂2

1 + N2σ̂2
2

N1 + N2
,

N1µ̂1 + N2µ̂2

N1 + N2
+ z α

2

√
N1σ̂2

1 + N2σ̂2
2

N1 + N2

]
. (13)
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For equal sample sizes, N1 = N2 = N , we get[
µ̂1 + µ̂2

2 − z α
2

√
σ̂2

1 + σ̂2
2

2 ,
µ̂1 + µ̂2

2 + z α
2

√
σ̂2

1 + σ̂2
2

2

]
, (14)

which is the final result that expresses the CI in terms of the statistical parameters of both experiments.

V. Visualization

Figure 5: Curves showing the distribution of the mean value based on sample 1 and 2 data and the computed
joint distribution.
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