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L4C Seismometer transfer function

Abstract

Deriving the i-v curve of a seismometer.

Index Terms

seismometer, L4C

The seismometer, L4C geophone, is essentially a mass-spring system with resonance frequency at 1Hz. It
is a dynamic device, as shown in Fig. 1 and the motion of the coil will contribute to its impedance.

Figure 1: Left: an image of L4C geophone, right: cartoon of inner mechanics. Credit: [@Bow-
den03calibrationof]

The oscillations of the mass are read out by coupling a magnet to a pick up coil. We first want to understand
the transfer function associated with this system and the Johnson noise originating from the real part of
the coil impedance.

There is a one-to-one mapping between the parameters of a mass-spring system and those of an RLC
circuit. Figure 2 illustrates this correspondence.
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Table I: Descriptions of the parameters

Spring-Mass RLC circuit
Parameter Description Parameter Description

k Spring constant C Capacity
c Damping coefficient R Resistance
m mass of the object L inductance

f(t) External force V (t) External Voltage

m

k

c

f(t)

C R

I

L

V

Figure 2: Left:Mass-Spring system with damping driven by an external force, Right: RLC circuit driven by
an external voltage source

Although they are totally different physical systems, the differential equations governing them are very
similar

, and they can be written as:

m
d2x

dt2 + c
dx

dt
+ kx = f(t) (Newton’s second law) (1)

L
d2Q

dt2 + R
dQ

dt
+ Q

C
= V (t) (Kirchhoff’s Voltage Law). (2)

(3)

The parameters are described in Table I.

I. Analytical model
Let’s concentrate on Eq. (1) , and divide the equation by m. The simplified differential equation for forced

harmonic oscillator with damping reads:

ẍ + 2ζω0ẋ + ω2
0x = f(t)

m
, x(0) = x0, and ẋ(0) = ẋ0, (4)

where ẋ ≡ dx
dt , ω0 ≡

√
k
m is the natural frequency of the oscillation, and ζ ≡ c

2
√

mk
is the damping ratio.

We also included the initial conditions.
We are dealing with an in-homogeneous linear differential equation with constant coefficients. One of the

best tools to solve such equations is the Laplace transformation:

X(s) = L
[
x(t)

]
=

∫ ∞

0
dt e−s tx(t). (5)

The nice feature of the Laplace transformation is that it converts differential equations to algebraic
equations. It follows from the transformation property of the derivatives:
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L
[
ẋ(t)

]
=

∫ ∞

0
dt e−s t dx

dt
=

∫ ∞

0
dt

d

dt

(
e−s tx

)
−

∫ ∞

0
dt

( d

dt
e−s t

)
x (6)

=
(
e−s tx

)∣∣∣∣∞

0
+ s

∫ ∞

0
dte−s tx = sX(s) − x0.

Similarly the second order derivative transforms as

L
[
ẍ(t)

]
= sL

[
ẋ(t)

]
− ẋ0 = s2X(s) − sx0 − ẋ0. (7)

Laplace transforming Eq. (4) we get

s2X − sx0 − ẋ0 + 2ζω0(sX − x0) + ω2
0X = 1

m
F (s). (8)

Solving Eq. (8) for X, we get

X = sx0 + 2ζω0x0 + ẋ0

s2 + 2ζω0s + ω2
0

+ 1
m

F (s)
s2 + 2ζω0s + ω2

0

= (s + ζω0)x0 + ζω0x0 + ẋ0

(s + ζω0)2 + ω2
0(1 − ζ2) + 1

m

F (s)
(s + ζω0)2 + ω2

0(1 − ζ2) . (9)

The first term in Eq. (9) is related to the initial conditions, and the excitations associated with this term
will die out due to damping. The second term relates the response of the system to the external force.

The transfer function of the system is given by

H(s) = X(s)
F (s)

∣∣∣∣
x0=0=ẋ0

= 1
m

1
(s + ζω0)2 + ω2

0(1 − ζ2) . (10)

II. Response to a sinusoidal force
Although we will concentrate mostly on the transfer function, it is possible to evaluate the inverse Laplace

transform if the functional form of the driving force is known. It is a good exercise to calculate the time
domain functions when the system is driven by a sinusoidal force. Let’s assume that f(t) is of the following
form:

f(t) = f0 sin(ωt). (11)

Its Laplace transform is given by:

F (s) ≡ L
[
f(t)

]
= f0ω

s2 + ω2 . (12)

We will have to do some partial fraction expansion:
1

((s + ζω0)2 + ω2
0(1 − ζ2)) (s2 + ω2) = A(s + ζω0) + B

(s + ζω0)2 + ω2
0(1 − ζ2) + Cs + D

s2 + ω2 , (13)

which will be easy to convert back to time domain since they will correspond to sines and cosines with
exponential functions in front. We now need to figure out A, B, C and D. If we were to equate the
denominators and sum up the resulting numerators, we will see that, in order to set the coefficient of
the s3 term in the numerator to zero we will need A = −C. To relate C and D we can multiply (13) by
s − iω and then set s = iω. This will remove the first term on the right hand side and yield:

iωC + D = 1
(iω + ζω0)2 + ω2

0(1 − ζ2) (14)

This is a complex equation, and splitting it into the real and imaginary part, we get:

D(ω2
0 − ω2) − 2Cω2ω0ζ = 1

Cω(ω2
0 − ω2) + 2Dωω0ζ = 0. (15)
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Inverting it, we get:

C = −2ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2

D = ω2
0 − ω2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 (16)

Finally, setting s = −ζω0, and going trough some algebra we get.

B = ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 . (17)

We can now inverse transform Eq. (9) using elementary properties of the transformation:

x(t) = L−1[
X(s)

]
. (18)

Inverse Laplace transformation yields.

x(t) =
[

x0 cos(ω0
√

1 − ζ2 t) + ζω0x0 + ẋ0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+2f0ω

m

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t cos(ω0
√

1 − ζ2 t)

+f0ω

m

1
ω0

√
1 − ζ2

ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t sin(ω0
√

1 − ζ2 t)

−2f0ω

m

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 cos(ω t) + f0

m

ω2 − ω2
0

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 sin(ω t). (19)

We can do one last touch and combine the last two terms into as single function with a phase shift.
The full solution with damping, and with f(t) = f0 sin(ω t), can be written as:

x(t) =
[

x0 cos(ω0
√

1 − ζ2 t) + ζω0x0 + ẋ0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+ f0ωe−ζω0t

m[(ω2
0 − ω2)2 + 4ω2ω2

0ζ2]

[
2ω0ζ cos(ω0

√
1 − ζ2 t) + ω2 − ω2

0 + 2ω2
0ζ2

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
+ f0

m
√

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2
sin(ω t − δ) (20)

where δ ≡ arctan
[

2ω ω0ζ
ω2

0−ω2

]
, the first line is related to the initial conditions, the second and third lines are

the transient response, and finally the last line is the steady state solution.
At later times, t ≫ 1/(ζω0), i.e., in the steady state, only the last term survives.
The x(t) is sinusoidal, but it will lag by a phase δ.
The system will enter in resonance at ω = ω0

√
1 − 2ζ.

The value of the resonance amplitude is f0/(2ω2
0ζ

√
1 − ζ2).

At ζ = 0 (no damping), the amplitude diverges. We need to go back and study this case carefully.
Resonances at zero damping: The final solution runs into problems when we consider ζ = 0 and ω = ω0:

the coefficient of the steady state solution diverges. This is because of the assumptions we made when we
were inverting X(s). At ζ = 0 and ω = ω0, two poles will merge and create a second order pole. Let’s take
a closer look:

lim
ζ→0, ω→ω0

1
((s + ζω0)2 + ω2

0(1 − ζ2)) (s2 + ω2
0) = 1

(s2 + ω2
0)2 . (21)

We can figure out how to inverse transform it by exploiting few features of the Laplace transforms as follows:
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L−1
[

1
(s2 + ω2

0)2

]
= L−1

[
− 1

2s

d

ds

(
1

s2 + ω2
0

)]
= −1

2

∫ t

0
dττ

sin(ω0τ)
ω0

= − 1
2ω0

d

dω0

∫ t

0
dτ cos(ω0τ) = − 1

ω0

d

dω0

[
sin(ω0t)

ω0

]
= sin(ω0t) − ω0t cos(ω0t)

2ω3
0

(22)

The full solution at the resonance frequency (ω = ω0 ) with no damping (ζ = 0) is:

x(t) =
[
x0 cos(ω0 t) + ẋ0

ω0
sin(ω0 t)

]
+

[
f0

2mω2
0

(sin(ω0t) − ω0t cos(ω0t))
]

. (23)

This shows that the amplitude will grow with time. In reality the model will break at some point since
the amplitude of oscillations cannot grow indefinitely. (For example, the spring will literally break if it is
stretched too far.)

A. Visuals
The fact that we can’t change the parameters of the seismometer at will should not stop us from having

some fun with fiddling around with seismometer parameters to observe the resulting motion and signal. The
interactive plot in Fig. 3 shows the position of the mass, as described in Eq. (20), and the speed of the
motion. The seismometer signal is proportional to the speed of the test mass, see Eq. (25).

Figure 3: The position and veleocity of a damped and forced harmonic oscillator. The right axis shows the
speed of the mass, which is also proportional to the measured voltage.

III. Impedance vs frequency

In order to compute the effective impedance of the sensor, we can poke it with a test current i(t) and
compute the corresponding voltage across the device. Let us start from Eq. (4) and replace the right hand
side with the force created by the probing current:

ẍ + 2ζω0ẋ + ω2
0x = Bli

m
, (24)
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Table II: Descriptions of the parameters

Parameter Description Value
m mass 1[kg]
R Resistance 5500[Ω]
L Inductance 6050[mH]
G Coupling 276[ V

m/s ]
ζ Damping 0.28

where B is the magnetic field of the permanent magnet attached to the test mass and l is the effective length
of the coil. The probing current creates a force on the permanent magnet and the test mass moves to create
an induced voltage.

When operated around the natural frequency of the device, the voltage is proportional to the velocity:

vg(t) = Blẋ. (25)

Note that we are trying to isolate the impedance associated with the dynamics. The seismometer has its
intrinsic resistance(R) and inductance(L) which we will simply add on as Ls + R. We can easily convert the
relation between x and i in Eq. (24) into a relation between vg and i by taking another derivative:

d2

dt2 ẋ + 2ζω0
d

dt
ẋ + ω2

0 ẋ = Bli̇

m
. (26)

Replacing ẋ with vg

Bl yields

v̈g + 2ζω0v̇g + ω2
0vg = B2l2i̇

m
. (27)

In the s space, the relation between the current and the voltage is given by:

Vg(s) = B2l2

m

s

s2 + 2ζω0s + ω2
0

I(s) ≡ Z(s)I(s), (28)

where we identify the factor in front of I(s) as the impedance associated with the dynamics of the mass.
Finally, we can add the intrinsic impedance of the coil to get the complete impedance as

Z(s) = Ls + R + G2 s

s2 + 2ζω0s + ω2
0

= Ls3 + (2Lζω0 + R)s2 + (2ζω0R + ω2
0L + G2)s + Rω2

0
s2 + 2ζω0s + ω2

0
, (29)

where we defined G2 = B2l2

m .

Table II shows the values of the device parameters.

We can plot the impedance as a function of frequency by plugging in s = j2πf and the numerical values
from Table II into Eq. (29), we can compute the impedance as follows:

Z(f) = 6.05s3 + 5521s2 + 95976s + 217131
s2 + 3.52s + 39.48

∣∣∣∣
s=j2πf

. (30)

Figure 4 shows the impedance of the device.
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Figure 4: Impedance as a function of the frequency. Right axis shows the angle of the impedance.
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