
1

Mining JPL jobs

Abstract
This is a deep dive into more than 700+ NASA’s Jet Propulsion Lab job posts to extract insights on the
specifications and requirements.

Index Terms
JPL,NASA,Python,Selenium, D3

Contents

I Introduction 1

II Crawling the Web 1

III Three ways to slice 4

IV Functions 4

V Levels 7

VI Types 7

VII Keywords 7

VIII Languages 7

IX To be continued 7

I. Introduction
I am a big fan of Jet Propulsion Laboratory (JPL). I have created an interactive post that shows the full

time line of all of the JPL missions, and an interactive dashboard to slice and dice the missions. I have been
following the job posts from JPL for quite a while now, and created some automated tools to collect the
job postings from LinkedIn everyday since the beginning of the year 2020. My ultimate goal is to extract
statistics out of the required skills to land a job at JPL. This post is a detailed inspection of 722 JPL job
posts.

II. Crawling the Web
About a year ago, I partnered with a web developer to build a webpage for our group at work. I am not

a web-developer, and I concentrated on the automated web-testing, which was quite fun! It was based on a
Python based Selenium web crawler. I scheduled it to run daily to launch the page and crawl every corner
of it to look for failues and generate a report. It also enabled us to check if the page was accessible or not.
It would even generate automated emails if the page is not accessible. This was quite an experience. I later
modified the tool to collect data from the internet for various projects, one of which is collecting data from
a job page.

Let me provide a quick tutorial on running Selenium with Python3. You can find the code in my repository
or copy it below.

Python 3 & Selenium browser launch
Hide

email: quarktetra@gmail.com
Find the interactive HTML-document here.

https://tetraquark.netlify.app/post/jpltimeline/jpltimeline/
https://tetraquark.netlify.app/post/jpldashboard/jpldashboard/
https://github.com/quarktetra/web_crawlers/blob/main/LaunchingSeleniumPython3.py
mailto:quarktetra@gmail.com
https://tetraquark.netlify.app/post/mining_jpl_jobs/mining_jpl_jobs/

2

browser="Chrome"
#browser="FF"
url="https://www.indeed.com/"

if browser=="FF":
from selenium.webdriver.firefox.firefox_binary import FirefoxBinary
driver = webdriver.Firefox(executable_path='C:\Python3_scheduled\geckodriver.exe') # get gecko from https://github.com/mozilla/geckodriver/releases

if browser=="Chrome":
from selenium import webdriver
driver = webdriver.Chrome('C:\Python3_scheduled\chromedriver.exe') # get chrome driver from https://chromedriver.chromium.org/downloads

driver.get(url)
driver.implicitly_wait(10)

What this code does is very simple: it triggers an instance of Firefox or Chrome depending on the selection
at the top of the script. It is important to note that you will need to download the driver files, see the links
in the code, and save them to a folder associated with the path in the code so that Python can launch
the browser. Depending on the site you are working on, you may need to log in with you credentials. For
example, in the case of LinkedIn, the credentials can be submitted to the correct fields with the following
code.

Logging in

Hide

It is very important to note that it is never a good idea to include the credentials in plain text in the code.
I always keep my credential encrypted elsewhere and load them via the code. After the log in, one navigates
to a URL that includes the search parameter, which will return the list of jobs. It is then somewhat a tedious
coding exercise to locate the fields of interest and compile the data. Unfortunately, it is a running target
since as the page design changes, the field identifiers may change causing failures in the code. This means
that one needs to keep on top of the code, so that it stays functional. I needed to update the code every
other month on the average.

I have been very persistent in maintaining the code over the last year, and scheduled the code to run
daily. I now have data on 722 JPL job posts, which I will slice and dice below. Let us peek at the (almost)
raw data in Tab. II below, which is interactive and searchable. The data is illustrated in Fig. 1 on the right,
where each circle represents a job listing (hover over the circles to see more.)

3

Show 10 entries Search:

Showing 1 to 10 of 722 entries Previous 1 2 3 4 5 … 73 Next

Type Level Function Title

1 Contract Entry Other channel-marketing-manager

2 Contract Associate Management Manufacturing pricing-analyst-i

3 Contract Entry Engineering/Science electronics-engineer-i

4 Contract Associate HR/PR/Legal/Education/Admin qa-technical-training-specialist-ii-instructor

5 Contract Associate Accounting/Auditing/Finance accounting-specialist-ii

6 Contract Associate Management Manufacturing subcontract-manager-ii

7 Contract Associate Other techonologist-ii-tms

8 Contract Entry Engineering/Science mechanical-engineer-level-1

9 Contract Entry Information Technology experienced-subcontract-compliance-advisor

10 Contract Associate Management Manufacturing experienced-pricing-analyst

JPL jobs posted over the year 2020 and early 2021.

4

III. Three ways to slice

Just to get an overall feel for the data, it is illustrative to group it using three different attributes:

1. Function,

2. Level,
3. Type .

This will still be a high level review of the data, and it will only provide a feel for the content. I will later
create a filter to narrow down the data to what I am mostly interested in. We will also extract some useful
statistics. Let’s dive in and slice and dice the data.

IV. Functions

The job posts include a field related to the functional group. In the original data there are 39 individual
functions, which is a bit too granular for my purposes. I re-mapped them to broader titles.

Show the mapping of the functional groups (Table 2)

Hide

Warning: The ‘.dots‘ argument of ‘group_by()‘ is deprecated as of dplyr 1.0.0.
This warning is displayed once every 8 hours.
Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was generated.

‘summarise()‘ has grouped output by ’thefunction’. You can override using the ‘.groups‘ argument.

5

Show 15 entries Search:

Showing 1 to 15 of 39 entries Previous 1 2 3 Next

Function Function original count

1 Engineering/Science Engineering 200

2 Information Technology Information Technology 184

3 Other Other 58

4 Management Manufacturing Management Manufacturing 38

5 HR/PR/Legal/Education/Admin Education Training 37

6 HR/PR/Legal/Education/Admin Administrative 31

7 Research Analyst IT Research Analyst Information Technology 28

8 HR/PR/Legal/Education/Admin Human Resources 20

9 Manufacturing Manufacturing 16

10 Accounting/Auditing/Finance Accounting/Auditing Finance 13

11 Customer Service/Sales Business Development Sales 10

12 Customer Service/Sales Finance Sales 10

13 HR/PR/Legal/Education/Admin Public Relations 9

14 Information Technology Other Information Technology Management 8

15 Customer Service/Sales Sales 7

6

Mapping the functional groups to broader titles
The remapping yields 9 functional groups, as in Tab. IV and Fig. 2.
Show the final functional groups (Table 3)
Hide

Show 15 entries Search:

Showing 1 to 9 of 9 entries Previous 1 Next

Function count

1 Information Technology 205

2 Engineering/Science 201

3 HR/PR/Legal/Education/Admin 100

4 Other 69

5 Customer Service/Sales 39

6 Management Manufacturing 38

7 Research Analyst IT 28

8 Accounting/Auditing/Finance 26

9 Manufacturing 16

7

Re-grouped functions.
It is not surprising to see that the top two function categories are Information Technology (205 jobs) and

Engineering/Science (201 jobs). The Engineering/Science jobs are more relevant for my background, but
before applying any filters, let’s slice the data in a different way.

V. Levels
The data can be put into 6 levels, as in Fig. 3a. and Fig. 3b.
The jobs listings are dominated by Entry level (231 instances).

VI. Types
Finally we can take a look at the types of the jobs: There are 4 types, as in Fig 4a and 4b. Most of the

jobs are Full-Time with 538 instances.

VII. Keywords
As we are crawling the posts, we can not only collect the meta data, but also the inner text of the job

information. In the HTML page, the job description lives in a particular element. I locate that element and
grab its inner html. I save it for later analysis.

The cloud on the right shows the words with sizes scaled with their frequency of appearances in the job
postings.

One may be inclined to omit the obvious words, such as “JPL,” however, that would be a mistake. The
frequency of the word “JPL” appearing serves as a gauge. For example, we see that the word “data” appears
almost as frequently as “JPL” which underscores the importance of data, and presumably data science, to
JPL.

VIII. Languages
As we have the full text content of all the postings, let;s take a quick look at frequency of programming

languages appearing in the posts. To this end, I came up with a list to search for:
The languages are roughly ordered by the amount of experience I have with them. For the languages/tools

listed after ‘Knime,’ my experience is limited. However, this I will decide if I need to invest time to learn more
about them if they show up frequently. Figure 6a and b show the ones from my list appearing frequently in
the job posts.

It is clear that Python dominates the languages JPL looks for.

IX. To be continued
This is a post in progress. I have a lot to add: What other qualifications do the look for the most? How

about ML related tools? Do I meet these requirements? I am also building a ML based algorithm that will
tell me if a job post is a good fit for me by matching my skills with the requirements. Stay tuned, and stay
safe.

	Introduction
	Crawling the Web
	Three ways to slice
	Functions
	Levels
	Types
	Keywords
	Languages
	To be continued

