Eigenvectors of n - &

Abstract

Finding eigenstates of spin projection operator.
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The straightforward way to find the eigenvectors of 7 - & would be to use the usual method for finding

eigenvalues and then the eigenvectors. Let us try to solve the problem using another method. We have
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7 = sin 6 cos ¢& +sin 6 sin ¢f+cos 62. Assume we start with 2 pointing along 2, so the state is |2,,) = ( 0 )

which is an eigenvector of the Sn operator with eigenvalue 1. Let us rotate the state |2,,) around § by
angle 6 which can be done by acting with the operator;
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You can check that above equation is correct by Taylor expanding the e~v?/2, or you can visualize the effect

as rotating a vector around § by angle € keeping in mind that this is not really a vector (spin-1 particle),
but it is a spinor (spin 1/2), which is reflected by the fact that we have ¢ instead of §. Next task is to rotate
again, around the Z by angle ¢ which can be done by acting with the operator;
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The composite operator becomes
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The eigenvectors can be recovered as
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In order to find (A + |S|A+) we can use the above method to express [) in terms of |2, q).
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To simplify the relation, we will compute the object €%i%/25,e~i%/2 where we will assume k # j (if k =4,

we can move o through the exponentials to get o). Consider k # j case:
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This equation is nothing but the rotation equation for the vector ¢ around the j-axis. This tells us that ¢
indeed transforms like a vector, this is why it has a vector arrow on top! Now the problem becomes easier,
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We need to keep in mind that R,(jq)l(a) = Opm for j = k. Componentwise we get
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(A + |Sylat) = i%Ré‘;(d))Rfﬁ{%(G) = % sin 0sin ¢,
(1 [Sifa%) = 3 REM(GRYA6) = 1 sinbcoss. (8)

And these results can be combined into (A4|S|A+) = +17 As one can argue, this is not the fastest method to
solve the problem, however it provides insights to o- matrices and shows why they deserve the arrow on top.
This comes from the fact that structure constants (€;;%) in the fundamental representation of SU(2) group
(the group of 2 x 2 matrices generated by o-matrices), become the generators of the adjoint representation,
i.e., the usual vector space.



