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Eigenvectors of n̂ · σ⃗

Abstract

Finding eigenstates of spin projection operator.
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angular momentum, operator algebra
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The straightforward way to find the eigenvectors of n̂ · σ⃗ would be to use the usual method for finding
eigenvalues and then the eigenvectors. Let us try to solve the problem using another method. We have
n̂ = sin θ cos ϕx̂+sin θ sin ϕŷ+cos θẑ. Assume we start with n̂ pointing along ẑ, so the state is |ẑup⟩ =

(
1
0

)
which is an eigenvector of the S⃗.n̂ operator with eigenvalue 1. Let us rotate the state |ẑup⟩ around ŷ by
angle θ which can be done by acting with the operator;

e−iσyθ/2 =
(

cos( θ
2 ) − sin( θ

2 )
sin( θ

2 ) cos( θ
2 )

)
. (1)

You can check that above equation is correct by Taylor expanding the e−iσyθ/2, or you can visualize the effect
as rotating a vector around ŷ by angle θ keeping in mind that this is not really a vector (spin-1 particle),
but it is a spinor (spin 1/2), which is reflected by the fact that we have θ

2 instead of θ. Next task is to rotate
again, around the ẑ by angle ϕ which can be done by acting with the operator;

e−iσzϕ/2 =
(

e−i ϕ
2 0

0 ei ϕ
2

)
. (2)

The composite operator becomes

e−iσzϕ/2e−iσyθ/2 =
(

e−i ϕ
2 0

0 ei ϕ
2

)(
cos( θ

2 ) − sin( θ
2 )

sin( θ
2 ) cos( θ

2 )

)

=
(

e−i ϕ
2 cos( θ

2 ) −e−i ϕ
2 sin( θ

2 )
ei ϕ

2 sin( θ
2 ) ei ϕ

2 cos( θ
2 )

)
. (3)

The eigenvectors can be recovered as

|n̂+⟩ = e−iσzϕ/2e−iσyθ/2|ẑup⟩ =
(

e−i ϕ
2 cos( θ

2 )
ei ϕ

2 sin( θ
2 )

)
,

|n̂−⟩ = e−iσzϕ/2e−iσyθ/2|ẑdown⟩ =
(

−e−i ϕ
2 sin( θ

2 )
ei ϕ

2 cos( θ
2 )

)
. (4)

In order to find ⟨n̂ ± |S⃗|n̂±⟩ we can use the above method to express |n̂±⟩ in terms of |ẑu,d⟩.

⟨n̂ ± |S⃗|n̂±⟩ = ⟨ẑu,d|eiσyθ/2eiσzϕ/2S⃗e−iσzϕ/2e−iσyθ/2|ẑu,d⟩. (5)
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To simplify the relation, we will compute the object eiσjα/2σke−iσjα/2 where we will assume k ̸= j (if k = j,
we can move σk through the exponentials to get σk). Consider k ̸= j case:

eiσjα/2σke−iσjα/2 =
(

I cos(α

2 ) + iσj sin(α

2 )
)

σk

(
I cos(α

2 ) − iσk sin(α

2 )
)

= cos ασk − sin αϵjkmσm = (cos αδkm + sin αϵkjm) σm

≡ R
(j)
km(α)σm. (6)

This equation is nothing but the rotation equation for the vector σ⃗ around the j-axis. This tells us that σ⃗
indeed transforms like a vector, this is why it has a vector arrow on top! Now the problem becomes easier,

⟨n̂ ± |Sk|n̂±⟩ = ⟨ẑu,d|eiσyθ/2eiσzϕ/2Ske−iσzϕ/2e−iσyθ/2|ẑu,d⟩
= ⟨ẑu,d|eiσyθ/2R

(z)
km(ϕ)Sme−iσyθ/2|ẑu,d⟩

= R
(z)
km(ϕ)R(y)

mn(θ)⟨ẑu,d|Sn|ẑu,d⟩

= ±1
2R

(z)
km(ϕ)R(y)

m3(θ). (7)

We need to keep in mind that R
(j)
km(α) = δkm for j = k. Componentwise we get

⟨n̂ ± |S3|n̂±⟩ = ±1
2R

(z)
3m(ϕ)R(y)

m3(θ) = ±1
2δ3mR

(y)
m3(θ) = ±1

2R
(y)
33 = ±1

2 cos θ,

⟨n̂ ± |S2|n̂±⟩ = ±1
2R

(z)
2m(ϕ)R(y)

m3(θ) = ±1
2 sin θ sin ϕ,

⟨n̂ ± |S1|n̂±⟩ = ±1
2R

(z)
1m(ϕ)R(y)

m3(θ) = ±1
2 sin θ cos ϕ. (8)

And these results can be combined into ⟨n̂±|S⃗|n̂±⟩ = ± 1
2 n̂ As one can argue, this is not the fastest method to

solve the problem, however it provides insights to σ- matrices and shows why they deserve the arrow on top.
This comes from the fact that structure constants (ϵijk) in the fundamental representation of SU(2) group
(the group of 2 × 2 matrices generated by σ-matrices), become the generators of the adjoint representation,
i.e., the usual vector space.


