Eigenvectors of $\hat{n} \cdot \vec{\sigma}$

Abstract

Finding eigenstates of spin projection operator.

Index Terms

angular momentum, operator algebra

CONTENTS

The straightforward way to find the eigenvectors of $\hat{n} \cdot \vec{\sigma}$ would be to use the usual method for finding eigenvalues and then the eigenvectors. Let us try to solve the problem using another method. We have $\hat{n} = \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$. Assume we start with \hat{n} pointing along \hat{z} , so the state is $|\hat{z}_{up}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 \setminus which is an eigenvector of the $\vec{S} \cdot \hat{n}$ operator with eigenvalue 1. Let us rotate the state $|\hat{z}_{up}\rangle$ around \hat{y} by angle θ which can be done by acting with the operator;

$$
e^{-i\sigma_y \theta/2} = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}.
$$
 (1)

You can check that above equation is correct by Taylor expanding the $e^{-i\sigma_y\theta/2}$, or you can visualize the effect as rotating a vector around \hat{y} by angle θ keeping in mind that this is not really a vector (spin-1 particle), but it is a spinor (spin 1/2), which is reflected by the fact that we have $\frac{\theta}{2}$ instead of θ . Next task is to rotate again, around the \hat{z} by angle ϕ which can be done by acting with the operator;

$$
e^{-i\sigma_z \phi/2} = \begin{pmatrix} e^{-i\frac{\phi}{2}} & 0\\ 0 & e^{i\frac{\phi}{2}} \end{pmatrix}.
$$
 (2)

The composite operator becomes

$$
e^{-i\sigma_z\phi/2}e^{-i\sigma_y\theta/2} = \begin{pmatrix} e^{-i\frac{\phi}{2}} & 0\\ 0 & e^{i\frac{\phi}{2}} \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2})\\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}
$$

$$
= \begin{pmatrix} e^{-i\frac{\phi}{2}}\cos(\frac{\theta}{2}) & -e^{-i\frac{\phi}{2}}\sin(\frac{\theta}{2})\\ e^{i\frac{\phi}{2}}\sin(\frac{\theta}{2}) & e^{i\frac{\phi}{2}}\cos(\frac{\theta}{2}) \end{pmatrix}.
$$
 (3)

The eigenvectors can be recovered as

$$
|\hat{n}+\rangle = e^{-i\sigma_z\phi/2}e^{-i\sigma_y\theta/2}|\hat{z}_{up}\rangle = \begin{pmatrix} e^{-i\frac{\phi}{2}}\cos(\frac{\theta}{2}) \\ e^{i\frac{\phi}{2}}\sin(\frac{\theta}{2}) \end{pmatrix},
$$

$$
|\hat{n}-\rangle = e^{-i\sigma_z\phi/2}e^{-i\sigma_y\theta/2}|\hat{z}_{down}\rangle = \begin{pmatrix} -e^{-i\frac{\phi}{2}}\sin(\frac{\theta}{2}) \\ e^{i\frac{\phi}{2}}\cos(\frac{\theta}{2}) \end{pmatrix}.
$$
 (4)

In order to find $\langle \hat{n} \pm | \vec{S} | \hat{n} \pm \rangle$ we can use the above method to express $|\hat{n} \pm \rangle$ in terms of $|\hat{z}_{u,d}\rangle$.

$$
\langle \hat{n} \pm |\vec{S}|\hat{n} \pm \rangle = \langle \hat{z}_{u,d}|e^{i\sigma_y \theta/2}e^{i\sigma_z \phi/2}\vec{S}e^{-i\sigma_z \phi/2}e^{-i\sigma_y \theta/2}|\hat{z}_{u,d}\rangle. \tag{5}
$$

email: serkay.olmez@seagate.com

Find the interactive HTML-document [here.](https://tetraquark.netlify.app/post/n_dot_sigma/n_dot_sigma/)

To simplify the relation, we will compute the object $e^{i\sigma_j\alpha/2}\sigma_k e^{-i\sigma_j\alpha/2}$ where we will assume $k \neq j$ (if $k = j$, we can move σ_k through the exponentials to get σ_k). Consider $k \neq j$ case:

$$
e^{i\sigma_j \alpha/2} \sigma_k e^{-i\sigma_j \alpha/2} = \left(I \cos(\frac{\alpha}{2}) + i\sigma_j \sin(\frac{\alpha}{2}) \right) \sigma_k \left(I \cos(\frac{\alpha}{2}) - i\sigma_k \sin(\frac{\alpha}{2}) \right)
$$

\n
$$
= \cos \alpha \sigma_k - \sin \alpha \epsilon_{jkm} \sigma_m = (\cos \alpha \delta_{km} + \sin \alpha \epsilon_{kjm}) \sigma_m
$$

\n
$$
\equiv R_{km}^{(j)}(\alpha) \sigma_m.
$$
 (6)

This equation is nothing but the rotation equation for the vector $\vec{\sigma}$ around the *j*-axis. This tells us that $\vec{\sigma}$ indeed transforms like a vector, this is why it has a vector arrow on top! Now the problem becomes easier,

$$
\begin{split}\n\langle \hat{n} \pm |S_k|\hat{n} \pm \rangle &= \langle \hat{z}_{u,d}|e^{i\sigma_y\theta/2}e^{i\sigma_z\phi/2}S_k e^{-i\sigma_z\phi/2}e^{-i\sigma_y\theta/2}|\hat{z}_{u,d}\rangle \\
&= \langle \hat{z}_{u,d}|e^{i\sigma_y\theta/2}R_{km}^{(z)}(\phi)S_m e^{-i\sigma_y\theta/2}|\hat{z}_{u,d}\rangle \\
&= R_{km}^{(z)}(\phi)R_{mn}^{(y)}(\theta)\langle \hat{z}_{u,d}|S_n|\hat{z}_{u,d}\rangle \\
&= \pm \frac{1}{2}R_{km}^{(z)}(\phi)R_{m3}^{(y)}(\theta).\n\end{split} \tag{7}
$$

We need to keep in mind that $R_{km}^{(j)}(\alpha) = \delta_{km}$ for $j = k$. Componentwise we get

$$
\langle \hat{n} \pm |S_3|\hat{n} \pm \rangle = \pm \frac{1}{2} R_{3m}^{(z)}(\phi) R_{m3}^{(y)}(\theta) = \pm \frac{1}{2} \delta_{3m} R_{m3}^{(y)}(\theta) = \pm \frac{1}{2} R_{33}^{(y)} = \pm \frac{1}{2} \cos \theta,
$$

$$
\langle \hat{n} \pm |S_2|\hat{n} \pm \rangle = \pm \frac{1}{2} R_{2m}^{(z)}(\phi) R_{m3}^{(y)}(\theta) = \pm \frac{1}{2} \sin \theta \sin \phi,
$$

$$
\langle \hat{n} \pm |S_1|\hat{n} \pm \rangle = \pm \frac{1}{2} R_{1m}^{(z)}(\phi) R_{m3}^{(y)}(\theta) = \pm \frac{1}{2} \sin \theta \cos \phi.
$$
 (8)

And these results can be combined into $\langle \hat{n} \pm | \vec{S} | \hat{n} \pm \rangle = \pm \frac{1}{2} \hat{n}$ As one can argue, this is not the fastest method to solve the problem, however it provides insights to σ - matrices and shows why they deserve the arrow on top. This comes from the fact that structure constants (ϵ_{ijk}) in the fundamental representation of $SU(2)$ group (the group of 2×2 matrices generated by σ -matrices), become the generators of the adjoint representation, i.e., the usual vector space.