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Decoherence due to phonons

Abstract
Some simple calculations on qubit decoherence due to phonons.

Index Terms
phonon,decoherence, Fermi’s golden rule

Qubits are physical systems coupled to their environment, which can cause the qubits to lose their quantum
nature. The decoherence time of a quantum computer is the lifetime of coherent quantum states. In the case
of MC QC, the interaction of the MC with the crystal structure and phonons may result in a transition out
of the two-state subspace previously defined.

In this section, we discuss the dynamics of decoherence, and calculate the lifetime of an MC qubit, focusing
on decoherence originating from phonon-assisted transitions out of the two-state qubit subspace. We turn
to references [1]–[4] for the detailed description of the spin-phonon interaction.

To begin, we must consider physically what occurs in a single-state excitation facilitated by absorption
or emission of a phonon, which is depicted in Fig. 1.

Figure 1: Phonon Stimulated Excitations

The states of the system, a few of which are shown in Fig. 1, have different energy and angular momentum
values; therefore, any transition between two states requires angular momentum and energy transfer to or
from the qubit. Excitations in the crystal structure will carry in (or out) the required angular momentum
and energy difference. These excitations can be described as transverse phonons, denoted as u(r). Phonons
cause perturbations on the angles of the crystal axes, which can be written as:

δϕ(r) = 1
2∇ × u(r). (1)

We can calculate the spin-phonon interaction by perturbing the magnetic anisotropy Hamiltonian with the
angles δϕ as follows:

Hs−ph ≡ e−iS·δϕHAe
iS·δϕ −H0

≃ (1 − iS · δϕ)HA(1 + iS · δϕ) −HA

= iδϕ · [HA,S], (2)

email: quarktetra@gmail.com
Find the interactive HTML-document here.

mailto:quarktetra@gmail.com
https://tetraquark.netlify.app/post/phonon_decoherence/phonon_decoherence/index.html


2

where high orders in δϕ are ignored because δϕ ≪ 1, and the Hamiltonian, HA, is the anisotropy contribution
to the Hamiltonian. The decoherence rate corresponding to the transitions from the subspace to outside the
subspace can be calculated utilizing Eq. (2).
This is accomplished by calculating the amplitude for the spin-phonon scattering. We define quantum states,
|Ψf,i⟩ = |ψf,i⟩ ⊗ |ϕf,i⟩, where the indices, f and i, refer to the final and initial states. |ψf,i⟩ and |ϕf,i⟩ are
the eigenstates of the spin and phonon Hamiltonians, respectively. Because two adjacent phonon states differ
by one phonon quanta, we define the phonon states, |ϕf ⟩ = |nk,λ⟩ and |ϕi⟩ = |nk,λ + 1⟩, where k is the
phonon wavevector, and λ ∈ {t1, t2, l} show the transverse and longitudinal polarizations of the phonon. A
transition from a state to its adjacent state above is given by the amplitude, ⟨Ψf |Hs−ph|Ψi⟩ = Ξ · Φ, where
Ξ ≡ −iℏwfi⟨ψf |S|ψi⟩ is the spin matrix element, ℏwfi is the energy gap between the two states, and the
phonon matrix elements are given by

Φ ≡
√

ℏ
8MN

∑
k,λ

eik·r
√
wk,λ

[ik × ek,λ]√nwfi
. (3)

Using Fermi golden rule and the transition amplitude given above, a general transition rate can be defined
as:

Γ = 1
N

∑
k,λ

(k × ek,λ)2

8Mℏwk,λ
nwfi

|Ξ|22πδ(wk,λ − wfi)

= V

12πℏ
|Ξ|2w3

fi

Mv5
t

nwfi
, (4)

where nwfi
= 1

eℏwfi/kB T −1
is the phonon occupation number, N is the number of cells in the crystal structure,

V is the unit cell volume, M is the mass of the cells, and wk,λ = vλk is the phonon frequency. vλ, the speed
of phonons, can be estimated as wfilc , where lc is the lattice constant. The decoherence time, τ ≡ Γ−1,
must be long enough such that a large number of single-qubit and multi-qubit operations can be executed
before the quantum states decohere. The spin matrix element can be computed as |Ξ|2 ∝ ℏ2S2w2

fi, which
yields to following expression for the decoherence time:

τ = τ(S, T ) ≃ 12πMl2c
S2 (e

ℏwfi
kB T − 1), (5)

Note that overall expression depends on the exponential term, which originated from the density of phonons.
Since ℏwfi ≃ 2KS, the decoherence time increases exponentially with S. Therefore, by appropriately
choosing the values of K and S (i.e., the type of the magnetic cluster), the decoherence time can be made
long enough for performing a useful number of operations.
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