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Silicon Based Quantum Computer

Abstract

Kane’s computer calculations.
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I. Introduction

Silicon-based nuclear spin QC, which is also known as Kane’s Computer [1], enables the control and
detection of nuclear spins individually in a scalable environment.
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Figure 1: Illustration of Kane’s QC.

It makes use of the hyper-fine interaction between electron spin and nuclear spin. It is based on electronic
devices for both generating and detecting nuclear spin polarization. There are a couple of externally applied
fields: B aligns the nuclear spin along z-axis, and BAC rotates the nuclear spin in the desired direction. The
dynamics are controlled by two types of gates: A-Gates control the density of the electrons at the nucleus
center, therefore controls the hyper-fine interaction, and J-Gates control the interactions of adjacent qubits.
Each 31P + nucleus serves as a qubit. The orientation of the nuclear spin is controlled through the electron
gas via the hyper-fine interaction. The hyper-fine interaction is proportional to the probability density of
the electron at the nucleus. The probability density of the electron is controlled by the voltage on A-Gate,
therefore the resonance frequency of the nuclear spin can be adjusted. If BAC matches this frequency,
then the spin of each individual nucleus can be rotated. The measurement is implemented by probing the
capacitance between adjacent gates. Using the capacitance measurement, one can calculate the electron
orbital wave function; which, in turn, dictates the nuclear spin polarization due to the hyper-fine coupling.
Therefore, the qubit states can be inferred via the measured capacity.

II. Single qubit operations
The Hamiltonian of P atom is given by

H0 = µBBσe
z − gnµnBσn

z + Aσe · σn, (1)

where µB is the Bohr magneton for electron, µn is the nuclear magneton, gn is the nuclear g-factor,
A = 8π

3 µBgnµn|Ψ(0)|2, and finally Ψ(0) is the value of the electron wave function at the origin. If we ignore
the interaction between the electrons and the nucleus, i.e. set A = 0, the eigenstates would be simply | ↑↓⟩,
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| ↑↑⟩, | ↓↓⟩ and | ↓↑⟩ with the eigenvalues µBB +gnµnB, µBB −gnµnB,−µBB +gnµnB and −µBB −gnµnB,
respectively. The figure below shows the levels and the corresponding eigenstates.

Figure 2: Energy levels for A = 0.

When A ̸= 0, it is easier to work in the coupled basis, which has the states labeled by the total angular
momentum, J , and the z-component of the total angular momentum, Jz. The coupled eigenstates, |j, mj⟩,
can be expanded in terms of the individual states, |s, ms⟩, as follows:

|11⟩ = | ↑↑⟩
|1 − 1⟩ = | ↓↓⟩

|10⟩ = 1√
2

(| ↑↓⟩ + | ↓↑⟩)

|00⟩ = 1√
2

(| ↑↓⟩ − | ↓↑⟩), (2)

where we suppress the spin s on the right hand side since it is 1/2 for all cases. The usual method to deal
with σ⃗e · σ⃗n is to express it in terms of the operators of the coupled basis:

σ⃗e · σ⃗n = 4S⃗e · S⃗n = 2(S⃗e + S⃗n)2 − 2(S⃗2
e + S⃗2

n)

= 2(J⃗2 − 3ℏ2

2 ), (3)

where we defined S⃗e + S⃗n = J⃗ and used S⃗2
e = S⃗2

n = ℏ2s(s + 1) = 3ℏ2

4 , since s = 1/2. Now it is easy to see
that the first two states in Eq. (2) are eigenstates of the full Hamiltonian since they have definite mj values
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and ms values simultaneously. One can check explicitly:

H0|11⟩ = (µBBσe
z − gnµnBσn

z + Aσ⃗e · σ⃗n)|11⟩
= (µBBσe

z − gnµnBσn
z )| ↑↑⟩

+ 2A(J⃗2 − 3ℏ2

2 )|11⟩

= (µBB − gnµnB + Aℏ2)|11⟩ (4)

where we used J⃗2|11⟩ = ℏ2j(j + 1)|11⟩ = 2ℏ2|11⟩. Similarly:

H0|1 − 1⟩ = (µBBσe
z − gnµnBσn

z )| ↓↓⟩

+ 2A(J⃗2 − 3ℏ2

2 )|1 − 1⟩

= (−µBB + gnµnB + Aℏ2)|1 − 1⟩. (5)

Therefore |1 ± 1⟩ are eigenfunctions of H0 with eigenvalues ±(µBB − gnµnB) + Aℏ2. We need two more
eigenstates, which will be certain linear combinations of |00⟩ and |10⟩. We first note the following property:

σe
z|00⟩ = 1√

2
σe

z(| ↑↓⟩ − | ↓↑⟩) = |10⟩

σe
z|10⟩ = 1√

2
σe

z(| ↑↓⟩ + | ↓↑⟩) = |00⟩

σn
z |00⟩ = 1√

2σn
z

(| ↑↓⟩ − | ↓↑⟩) = −|10⟩

σn
z |10⟩ = 1√

2
σn

z (| ↑↓⟩ + | ↓↑⟩) = −|00⟩ (6)

Using these flipping properties, we can write the Schrodinger equation for |00⟩ and |10⟩ in the matrix form:

H0

[
|00⟩
|10⟩

]
=

[
−3Aℏ2 µBB + gnµnB

µBB + gnµnB Aℏ2

] [
|00⟩
|10⟩

]
(7)

The eigenstates of the matrix above are

|E1⟩ = (α|00⟩ + |10⟩) /N1,

|E2⟩ = (β|00⟩ + |10⟩) /N2, (8)

and the corresponding eigenvalues are

E1 = −Aℏ2 +
√

4A2 + (µBB + gnµnB)2

E2 = −Aℏ2 −
√

4A2 + (µBB + gnµnB)2, (9)

where α = − 2A+
√

4A2+(µBB+gnµnB)2

µBB+gnµnB , β = − 2A−
√

4A2+(µBB+gnµnB)2

µBB+gnµnB and N1, N2 are normalization
constants. Let’s show these eigen states and values on a plot:
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Figure 3: Energy levels for A ̸= 0.

The energy splitting between the ground state and the first excited state can be read from the figure. If
we expand this splitting at the second order in A we get

ℏwA = 2Aℏ2 + 2gnµnB + 2A2ℏ4

µBB
, (10)

where we dropped the gnµnB term since it is small compared to µBB. Furthermore the ground state at the
first order in A becomes

|0⟩ ≃ | ↓↑⟩ − 2Aℏ2

µBB
| ↑↓⟩, (11)

where we omit the normalization for simplicity. One can also see from the figure that the first excited state
is | ↓↓⟩. Note that the energy splitting between the bottom two and the top two states is dominated by
the energy cost of flipping the spin of the electron; therefore, the splitting is approximately 2µBB. If the
temperature of the system is low enough, the top two states will decouple from the spectrum since the
system will not have enough energy to transition from the ground state or the first excited state to these
higher energy levels. Therefore, the only states at this energy scale are the ground and the first excited
states. Furthermore, as shown in the figure above, in the ground state, the spin of the electron is dominantly
↓, and it is also ↓ for the first excited state. Therefore the energy levels are simply labeled by the spin state
of the nucleus.

To quickly summarize, we have the two lowest energy eigenstates approximately given as:

|0⟩ ≃ | ↑⟩, |1⟩ ≃ | ↓⟩, (12)

where the arrows show the spin state of the nucleus. The corresponding energy levels are:

E0 ≃ −Aℏ2 − µBB − gnµnB − 2A2ℏ4

µBB

E1 = Aℏ2 − µBB + gnµnB, (13)

which can be rewritten as

E0 ≃ −µBB − A2ℏ4

µBB
− (Aℏ2 + gnµnB + A2ℏ4

µBB
)

E1 = −µBB − A2ℏ4

µBB
+ (Aℏ2 + gnµnB + A2ℏ4

µBB
). (14)

Since the energy of a system can be measured with respect to any reference level, we can measure the energy
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with respect to Eref ≡ −µBB − A2ℏ4

µBB . This simplifies Eq. (14) to

E0 ≃ −(Aℏ2 + gnµnB + A2ℏ4

µBB
) ≡ −ℏ

2 w0

E1 = (Aℏ2 + gnµnB + A2ℏ4

µBB
) ≡ ℏ

2 w0, (15)

where we defined w0 = 2(Aℏ2 + gnµnB + A2ℏ4

µBB ). This shows that the dynamics of the single qubit is the
same as a spin 1/2 particle in an external magnetic field, which is exactly the set up we considered at NRM
QC and showed that all single qubit operations are possible. Next we discuss the qubit-qubit interaction.

III. Two-qubit operations

The interaction between two qubits, which is due to the interaction of the electrons, can be described by
the Hamiltonian

Hint = Jcσ1e · σ2e. (16)

In principle, there is also an interaction between the nuclear spin of the first qubit and the electron spin
of the second qubit (and vice versa), which is of the form A1σ1n · σ2e + A2σ2n · σ1e. This interaction is
proportional to the value of the wave function of the first electron at the second nucleus (and vice versa).
However, if the separation of nuclei is large enough, the exponentially decaying wave function of the electron
will have a small value at the neighboring nucleus. Therefore, such interactions are ignored. The electron-
electron interaction, on the other hand, is much stronger since electron wave functions can have significant
overlap. The strength of the interaction is parameterized by Jc

Jc(R) ≃ 0.4 e2

ϵ aB

(
R

aB

)5/2
exp

(
−2R

aB

)
, (17)

where R is the separation of the nuclei, ϵ is the dielectric constant of the semiconductor and aB is the Bohr
radius in the semiconductor. Combining the interaction Hamiltonian with the single qubit Hamiltonian in
Eq. (1), we get the full Hamiltonian as

H = µBB(σ1e
z + σ2e

z ) − gnµnB(σ1n
z + σ2n

z ) + Jcσ1e · σ2e

+ A1σ1e · σ1n + A2σ2e · σ2n. (18)

We will treat the first line as the background Hamiltonian and the second line as the perturbation. Let us
first consider the ground state of the electrons without the perturbation. The ground state of the electrons
will be either | ↓↓⟩ or the spin singlet |sing⟩ ≡ | ↑↓⟩ − | ↓↑⟩ depending on the relative strength of B and Jc.
We can calculate the energy for each case as

⟨↓↓ |H| ↓↓⟩ = −2µBB + Jc

⟨sing|H|sing⟩ = −3Jc, (19)

which shows that if Jc < µBB/2, then the electron ground state is | ↓↓⟩ with the energy −2µBB + Jc. After
fixing the electron ground state, we can now include the levels of the nuclei. The levels will be ordered by
the eigenstates of σ1n

z + σ2n
z , which can be −2, 0 and 2. We also note that 0 eigenvalue is double degenerate.

Therefore the states are |00⟩ ⊗ | ↓↓⟩, |10 − 01⟩ ⊗ | ↓↓⟩, |10 + 01⟩ ⊗ | ↓↓⟩ and |11⟩ ⊗ | ↓↓⟩ with the energies
−2µBB + Jc − 2gnµnB, −2µBB + Jc, −2µBB and −2µBB + Jc + 2gnµnB, respectively. The eigen states
and the corresponding energy values are depicted in the figure below. In this notation, we reserve ↑↓ for
electron states and 0 for nuclear spin up and 1 for nuclear spin down.

https://tetraquark.netlify.app/post/quantum_computation/nrm_qc.htm
https://tetraquark.netlify.app/post/quantum_computation/nrm_qc.htm
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Figure 4: Energy levels for A = 0 with coupling.

On top of this background solution, we now turn on A1 and A2 terms, and we consider the case A1 =
A2 = A for simplicity. The perturbing Hamiltonian is

Hp = A(σ1e · σ1n + σ2e · σ2n). (20)

Let’s start with the first order correction to the energy of the state |11⟩ ⊗ | ↓↓⟩, which we will refer to as
E

(1)
top.

E
(1)
top = ⟨11| ⊗ | ↓↓ |Hp|11⟩ ⊗ | ↓↓⟩ = −2A (21)

And the first order correction to the state |00⟩ ⊗ | ↓↓⟩, which we will refer to as E
(1)
ground, is

E
(1)
ground = ⟨00| ⊗ | ↓↓ |Hp|00⟩ ⊗ | ↓↓⟩ = −2A. (22)

The middle states will get no correction at the first order in A due to cancellation of two terms.
Now we move to the second order corrections. The second order correction to the energy of the top state

is

E
(2)
top =

∑
kl,mn̸=11,↓↓

⟨11⟩ ⊗ | ↓↓ |Hp|kl, mn⟩⟨kl, mn|Hp|11⟩ ⊗ | ↓↓⟩
E

(0)
kl,mn − E

(0)
11,↓↓

= 2A2

µBB
, (23)

where k, l run over 0, 1 and m, n run over ↑, ↓ scanning all the states except |11⟩ ⊗ | ↓↓⟩. Only |kl, mn⟩ =
|10⟩ ⊗ | ↑↓⟩ gives a non-vanishing contribution to the sum. Repeating the same steps for the bottom level
gives

E
(2)
bottom = − 2A2

µBB
. (24)

Let us now consider the second order correction to the state |10 − 01⟩ ⊗ | ↓↓⟩, which we will refer to as E
(2)
sing

E
(2)
sing =

∑
kl,mn̸=sing

⟨10 − 01| ⊗ | ↓↓ |Hp|kl, mn⟩⟨kl, mn|Hp|10 − 01⟩ ⊗ | ↓↓⟩
E

(0)
kl,mn − E

(0)
sing

= 2A2

µBB − 2Jc
, (25)
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where the only contribution comes from |00⟩ ⊗ | ↑↓ − ↓↑⟩. Finally the second order correction to the state
|10 + 01⟩ ⊗ | ↓↓⟩, which we will refer to as E

(2)
trip is

E
(2)
trip = 2A2

µBB
, (26)

where the only contribution comes from |00⟩ ⊗ | ↑↓ + ↓↑⟩. The figure shows the energy levels when the
perturbation is included.

Figure 5: Energy levels at the second order for A ̸= 0 with coupling.

We had to go through detailed derivation of energy eigenstates and the corresponding energy values
because they are critical parts of the measurement, which will be discussed next.

IV. Measurement

Computation is done when Jc < µBB/2 for which the electrons are in the | ↓↓⟩ state. After the computation
Jc is adiabatically increased. The evolution of the states are shown in the figure. Lowest two states evolve
in to | ↑↓ − ↓↑⟩, whereas the upper two evolve into | ↓↓⟩. The state of the electrons can be detected by a
capacitance measurement between to adjacent A-gates.
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Figure 6: Evolution of the states under adiabatic change of Jc
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