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Super Conducting Quantum computer

Abstract
Superconducting qubit calculations .
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I. Introduction

Figure 1: Illustration of Josephson Junction

Super Conducting qubit is a Josephson Junction (JJ) which is composed of two superconducting metals
separated by a thin insulator. The current through a JJ is carried by tunneling Cooper pairs. JJ can be
described in the Ginzburg-Landau (GL) approximation. Quantum state of the system can be described by
wavefunctions

ψi =
√
nie

iϕi , (1)

where i = 1, 2 labels the left and the right regions. In GL model the electron number density of Cooper pairs
(2e charge) in the ith region is given by ni = |ψi|2, and the current is given by i = 2eṅ where n = n2 − n1.
We can assume that n1 ≈ n2 ≈ n0/2. However we will carefully keep track of the difference n. We will first
consider the junction with no bias voltage.
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II. Unbiased Josephson Junction

Although there is no external voltage applied, there will be a voltage difference between the two regions
if n ̸= 0. This potential difference between the regions is ∆V = −ne/C, where C is the capacitance of
the junction. Hence, the energy difference is ∆U = 2e∆V = −2ne2/C. We can now write the Schrodinger
equations for the wave functions ψ1 and ψ2 as

i
dψ1

dt
= Uψ1 − EJ

n0
ψ2,

i
dψ2

dt
= (U + ∆U)ψ2 − EJ

n0
ψ1, (2)

where EJ is the so called Josephson Energy. Using ψi = √
nie

iϕi and multiplying the first (second) line by
ψ1 (ψ2), we get

i
ṅ1

2 − n1ϕ̇1 = Un1 − EJ

n0

√
n1n2e

iϕ

i
ṅ2

2 − n2ϕ̇2 = (U + ∆U)n1 − EJ

n0

√
n1n2e

−iϕ, (3)

where we defined ϕ = ϕ2 − ϕ1. Taking the imaginary part of the difference of two lines we get

ṅ2 − ṅ1 = ṅ = 2EJ

n0

√
n1n2 sinϕ ≃ EJ sinϕ, (4)

from which we can easily get the current as

i = −2eṅ = −2eEJ sinϕ. (5)

In Eq. (3), dividing the first (second) line by n1 (n2) and taking the real part of the difference we get

ϕ̇2 − ϕ̇1 = ϕ̇ = −∆U − EJ

n0

(√
n2

n1
−

√
n1

n2

)
cosϕ ≃ 2ne2

C
, (6)

where we ignored a term with the square roots since it is of second order in n. Eqs. (4) and (6) are coupled
differential equations, and we decouple them by substituting Eq. (4) in the derivative of Eq. (6) to get

ϕ̈ = −2e2EJ

C
sinϕ ≃ −2e2EJ

C
ϕ, (7)

which is an harmonic oscillator with frequency wJ =
√

2e2EJ

C . Note that we assumed EJ > 0, therefore the
oscillations are around ϕ = 0. If EJ < 0, the oscillations will be around ϕ = π.

III. Biased Josephson Juction: Current Voltage Characteristics

If the junction is connected to a voltage source, the energy difference is ∆U = 2eV , where V is the applied
voltage. We just need to modify Eq. (6),

ϕ̇ ≃ −∆U = −2eV, (8)

which can be solved immediately to yield

ϕ(t) = ϕ0 − 2eV t. (9)

Putting this back into Eq. (5) yields

i(t) = −2eEJ sinϕ = −2eEJ sin(ϕ0 − 2eV t). (10)

This equation shows the unusual behavior of the Josephson junction: the current is sinusoidal when the
voltage is constant! These are the two important equations in this sub-chapter:

i(t) = Ic sinϕ
dϕ

dt
= −2eV. (11)
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However, we still need to calculate the Hamiltonian, since it governs the quantum dynamics of the system.
For later convenience, let us assume that the independent variable is the current and we want to eliminate
voltage in favor of it. Let us also assume that we drive the system by an external current, ie. The Hamiltonian
consists of two parts, the stored electrostatic energy and the work done by the current on the junction, that
is

H = Q̂2

2C −
∫
dtI(t)v(t) = Q̂2

2C + 1
2e

∫
dt(Ic sinϕ− ie)dϕ

dt

= Q̂2

2C − Ic

2e cosϕ− ieϕ

2e . (12)

Comparing this Hamiltonian with the usual Hamiltonian with p and x, we see that Q̂, ϕ and C play the
role of p̂, x and m, respectively.

IV. Josephson-Junction Qubits
We will start with the Hamiltonian in Eq. (12)

H = Q̂2

2C − IcΦ0

2π cos δ̂ − IΦ0

2π δ̂, (13)

where we defined Φ0 = h/2e. Note that the potential in the Hamiltonian is

U = −IcΦ0

2π (cos δ̂ − I

Ic
δ̂). (14)

Taking the derivative shows that the potential has a minimum if I
Ic
< 0. In the figure we plot the potential

for I
Ic

= 0.98.

Figure 2: The potential for the biased Josepson junction.

The high of the barrier becomes zero if I
Ic

= 1. Therefore, since we can control I, we can control the
height of the barrier. If we choose it appropriately, this potential can support two and only two states, as
shown in the figure.
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Figure 3: The energy levelsfor the biased Josepson junction.

Let us now decompose the control current into two parts,

I(t) = Idc + Irf cos(wrf t+ φ), (15)

where Irf ≪ Idc. Idc is chosen such that the potential supports two states. The Irf part can be treated as
a perturbation over the background. The perturbation Hamitonian can be written as

H2 = −Irf Φ0

2π cos(wrf t+ φ)
(

⟨0|δ̂|0⟩ ⟨0|δ̂|1⟩
⟨1|δ̂|0⟩ ⟨1|δ̂|1⟩

)
= −∆ cos(wrf t+ φ)σx. (16)

|0⟩ and |1⟩ are the ground and the first excited states of the system, which can be approximated by the
usual harmonic oscillator states. The diagonal terms vanish due to parity. Now if we choose our reference
energy level at the middle of the two energy levels the full Hamiltonian can be written as

H = w0

2 σz − ∆ cos(wrf t+ φ)σx, (17)

where w0 is the energy difference between the levels. This Hamiltonian is the same as the one we considered
for the NRM QC and we have shown in that it can generate any rotations in the Bloch Sphere.

Measurement: Measurement in this setup is very simple. By increasing Idc we can lower the height of
the barrier to a value between the energy levels. Assume the state is the first excited one. In this case, the
state will have enough energy to go over the barrier, and it can be measured by a sensor. If the state is the
ground one, it will still stay in the barrier.

Coupling: Coupling for the model at hand can be done by capacitors as shown in the figure below.

https://tetraquark.netlify.app/post/quantum_computation/nrm_qc.htm


5

Figure 4: Coupled qubits.

For this system the Hamiltonian is

H = Q̂2
1

2CJ
− IcΦ0

2π cos δ̂1 − IΦ0

2π δ̂1 + Q̂2
2

2CJ
− IcΦ0

2π cos δ̂2 − IΦ0

2π δ̂2

+

(
Q̂1 − Q̂2

)2
Cc

2C2
J

. (18)

Therefore the coupling is of the form Q̂1Q̂2. One can decouple the Q̂ part of the Hamiltonian by defining
Q̂± ∝ Q̂1 ± Q̂2, and similarly for δ̂± ∝ δ̂1 ± δ̂2. This gives

H =
Q̂2

+
2CJ

+
Q̂2

−
2CJ

+ V (δ̂+, δ̂−). (19)

In the symmetric case, Idc1 = Idc2, the eigen states are the symmetric and antisymmetric combinations of
the single junction states. The derivation for two-qubit operations is very similar to that of NRM quantum
computer.

https://tetraquark.netlify.app/post/quantum_nrm/quantum_nrm/index.html
https://tetraquark.netlify.app/post/quantum_nrm/quantum_nrm/index.html
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