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Abstract
Analysis of RLC filters.
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1 RLC filters
The rejection or selection of frequency bands can be easily accomplished by a passive RLC circuit. Figure 1
shows a generic, series RLC circuit.
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Figure 1: A generic RLC circuit driven by an sinusoidal source. The resistance R might be a discrete element
or the source resistance. A real inductor comes with series resistance. The boxed element represents a coil.
<span class=’plus’>... [+]</span> <span class=’expanded-caption’> A detailed model of a coil requires
more care. We will address that in the following sections.</span>

The steady state analysis of RLC circuits is as easy as manipulating algebraic equations with complex values.
For filtering purposes, all we need to do is to analyze the steady state. Transient analysis is much more
complicated and will give the full solution. However, all the extra terms in the full solution compared to the
steady state one will decay exponentially with time.

2 Phasor analysis
When a resistor of value R is under a voltage V , the current through is simply V/R. When a current i is
pushed through an ideal coil of inductance L, the voltage becomes V = L dI

dt . If we take the current as the real
part of I0eiωt we get V = iωLI, and the define the impedance as ZL = V/I = iωL. If the serial resistance of
RL is included to represent a real coil, the impedance becomes iωL + RL. Finally, the current through a
capacitor of capacitance C is given by C dV

dt , and defining the voltage phasor V = V0eiωt, the current becomes
iωCV we get the impedance for the capacitor as ZC = V/I = 1

iωC . We will use s = iω to represent complex
frequency.

Consider the circuit Fig. 1 for which the total impedance reads:

ZT = R + RL + ZC + ZL = RT + ZC + ZL = RT + 1
sC

+ sL = LCs2 + RT Cs + 1
sC

= L
s2 + RT

L s + 1
LC

s

= L
s2 + 2ζω0s + ω2

0
s

, (1)
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where we defined RT = R + RL, ω0 ≡ 1√
LC

as natural frequency of the oscillation, and ζ ≡ RT

2
√

L/C
as the

damping ratio. The current through the circuit is

I = Vin

ZT
= Vin

L

s

s2 + 2ζω0s + ω2
0

. (2)

We can define the voltage across one of the elements or the sum of voltages across any two elements as the
output. For example, let’s take the voltage across the inductor as the output define the transfer function as
the ratio of the output voltage and the input voltage to get:

HL(s) = VL

Vin
= I(sL + RL)

Vin
=

s2 + RL

L s

s2 + 2ζω0s + ω2
0

. (3)

If we define the voltage across the resistor R as the output [assuming it is a discrete element in the circuit,
not the resistance of the voltage source], the transfer function becomes:

HR(s) = VR

Vin
= IR

Vin
= R

L

s

s2 + 2ζω0s + ω2
0

. (4)

Finally, if we define the voltage across the capacitor as the output, the transfer function becomes:

HC(s) = VC

Vin
= IZC

Vin
= ω2

0
s2 + 2ζω0s + ω2

0
. (5)

Note that we can also define the output as the voltage across two elements combined. Although it is rather
trivial for passive filters, it is a good exercise to draw the poles and zeros of the transfer function in the
complex s domain. The poles are the same for any transfer function for this circuit, and they are at:

s± =


−ω0

(
ζ ±

√
ζ2 − 1

)
, ζ > 1

−ω0

(
ζ ± i

√
1 − ζ2

)
, ζ < 1

±iω0, ζ = 1.

(6)

In the interactive tool below, you can adjust the values of the circuit elements, or load one of the existing
LIGO Filters.
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Figure 2: Zero-pole diagram of and the frequency response of the selected RLC filter.

Let’s take a look at the filter at 45MHZ, seen in Fig. 3.

Figure 3: A closer look at the filter at 45MHz.

We see that that there is a gain of 4.5 or 13dB at around the resonance frequency. But is the maximum gain
right at the resonance frequency or is it shifted a bit? You can increase the value of R to see how the peak
moves relative to the resonance frequency. We can also calculate it by taking a closer look at Eq. (3) and
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Table 1: Descriptions of the parameters

Spring-Mass RLC circuit
Parameter Description Parameter Description

k Spring constant C Capacity
c Damping coefficient R Resistance
m mass of the object L inductance

f(t) External force V (t) External Voltage

calculate is absolute value square as:

|HL(s)|2 =

∣∣∣∣∣ s2 + RL

L s

s2 + 2ζω0s + ω2
0

∣∣∣∣∣
2

s=−iω

=
ω4 + R2

L

L2 ω2

(ω2 − ω2
0)2 + 4ζ2ω2

0ω2 . (7)

We take the derivative with respect to ω, set the result to 0 and solve for the critical value of ω for small RL:

d

dω
|HL(w)|2 = =⇒ ω = ω0

1√
1 − 2ζ2

− 1
ω0

R2
Lζ2

L2 + H.O.T., (8)

which shows that the highes amplification happens at a frequency a bit higher than the natural frequency.
This effect might be significant when ζ is large. For the LIGO filter , ζ = 0.11 which gives a shift of 1.2 %. I
do not know how to make use if this observation at this point, but if we were to target for the maximum
amplification for a selected frequency, the resonance frequency of the filter should be set a bit below the
targeted frequency. We will inspect this further to see if this has any implications on SNR.

3 Transient analysis
This section is included only for completeness and for fun since it is not necessary for filter purposes. There is
a one-to-one mapping between the parameters of a mass-spring system and those of an RLC circuit. Figure 4
illustrates this correspondence, and the parameters are described in Table 1.

m

k

c

f(t)

C R

I

L

V

Figure 4: Left:Mass-Spring system with damping driven by an external force, Right: RLC circuit driven by
an external voltage source

Although they are totally different physical systems, the differential equations governing them are very similar,
and they can be written as:

m
d2x

dt2 + c
dx

dt
+ kx = f(t) (Newton’s second law) (9)

L
d2q

dt2 + R
dq

dt
+ q

C
= V (t) (Kirchhoff’s Voltage Law). (10)

5



Let’s concentrate on Eq. (10) , and divide the equation by L. The simplified differential equation for forced
harmonic oscillator with damping reads:

q̈ + 2ζω0q̇ + ω2
0q = V (t)

L
, q(0) = q0, and q̇(0) = q̇0, (11)

where q̇ ≡ dq
dt , ω0 ≡ 1√

LC
is the natural frequency of the oscillation, and ζ ≡ R

2
√

L/c
is the damping ratio. We

also included the initial conditions.

We are dealing with an in-homogeneous linear differential equation with constant coefficients. One of the
best tools to solve such equations is the Laplace transformation:

Q(s) = L
[
q(t)

]
=

∫ ∞

0
dt e−s tq(t). (12)

The nice feature of the Laplace transformation is that it converts differential equations to algebraic equations.
It follows from the transformation property of the derivatives:

L
[
q̇(t)

]
=

∫ ∞

0
dt e−s t dq

dt
=

∫ ∞

0
dt

d

dt

(
e−s tq

)
−

∫ ∞

0
dt

( d

dt
e−s t

)
q (13)

=
(
e−s tq

)∣∣∣∣∞

0
+ s

∫ ∞

0
dte−s tq = sQ(s) − q0.

Similarly the second order derivative transforms as

L
[
q̈(t)

]
= sL

[
q̇(t)

]
− q̇0 = s2Q(s) − sq0 − q̇0. (14)

Laplace transforming Eq. (11) we get

s2Q − sq0 − q̇0 + 2ζω0(sQ − q0) + ω2
0Q = 1

L
V (s). (15)

Solving Eq. (15) for Q, we get

Q = sq0 + 2ζω0q0 + q̇0

s2 + 2ζω0s + ω2
0

+ 1
L

V (s)
s2 + 2ζω0s + ω2

0

= (s + ζω0)q0 + ζω0q0 + q̇0

(s + ζω0)2 + ω2
0(1 − ζ2) + 1

L

V (s)
(s + ζω0)2 + ω2

0(1 − ζ2) . (16)

The first term in Eq. (16) is related to the initial conditions, and the excitations associated with this term
will die out due to damping. The second term relates the response of the system to the external force.

The transfer function of the system is given by

H(s) = Q(s)
V (s)

∣∣∣∣
q0=0=q̇0

= 1
L

1
(s + ζω0)2 + ω2

0(1 − ζ2) . (17)

Although we will concentrate mostly on the transfer function, it is possible to evaluate the inverse Laplace
transform if the functional form of the driving force is known. It is a good exercise to calculate the time
domain functions when the system is driven by a sinusoidal force. Let’s assume that f(t) is of the following
form:
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v(t) = v0 sin(ωt). (18)

Its Laplace transform is given by:

V (s) ≡ L
[
v(t)

]
= v0ω

s2 + ω2 . (19)

We will have to do some partial fraction expansion:

1
((s + ζω0)2 + ω2

0(1 − ζ2)) (s2 + ω2) = A(s + ζω0) + B

(s + ζω0)2 + ω2
0(1 − ζ2) + Cs + D

s2 + ω2 , (20)

which will be easy to convert back to time domain since they will correspond to sines and cosines with
exponential functions in front. We now need to figure out A, B, C and D. If we were to equate the
denominators and sum up the resulting numerators, we will see that, in order to set the coefficient of the s3

term in the numerator to zero we will need A = −C. To relate C and D we can multiply (20) by s − iω and
then set s = iω. This will remove the first term on the right hand side and yield:

iωC + D = 1
(iω + ζω0)2 + ω2

0(1 − ζ2) (21)

This is a complex equation, and splitting it into the real and imaginary part, we get:

D(ω2
0 − ω2) − 2Cω2ω0ζ = 1

Cω(ω2
0 − ω2) + 2Dωω0ζ = 0. (22)

Inverting it, we get:

C = −2ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2

D = ω2
0 − ω2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 (23)

Finally, setting s = −ζω0, and going trough some algebra we get.

B = ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 . (24)

We can now inverse transform Eq. (16) using elementary properties of the transformation:

q(t) = L−1[
Q(s)

]
. (25)

Inverse Laplace transformation yields.

q(t) =
[

q0 cos(ω0
√

1 − ζ2 t) + ζω0q0 + q̇0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+2v0ω

L

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t cos(ω0
√

1 − ζ2 t)

+v0ω

L

1
ω0

√
1 − ζ2

ω2 − ω2
0 + 2ω2

0ζ2

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 e−ζω0t sin(ω0
√

1 − ζ2 t)

−2v0ω

L

ω0ζ

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 cos(ω t) + v0

L

ω2 − ω2
0

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2 sin(ω t). (26)
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We can do one last touch and combine the last two terms into as single function with a phase shift.

The full solution with damping, and with f(t) = v0 sin(ω t), can be written as:

q(t) =
[

q0 cos(ω0
√

1 − ζ2 t) + ζω0q0 + q̇0

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
e−ζω0t

+ v0ωe−ζω0t

L[(ω2
0 − ω2)2 + 4ω2ω2

0ζ2]

[
2ω0ζ cos(ω0

√
1 − ζ2 t) + ω2 − ω2

0 + 2ω2
0ζ2

ω0
√

1 − ζ2
sin(ω0

√
1 − ζ2 t)

]
+ v0

L
√

(ω2
0 − ω2)2 + 4ω2ω2

0ζ2
sin(ω t − δ) (27)

where δ ≡ arctan
[

2ω ω0ζ
ω2

0−ω2

]
, the first line is related to the initial conditions, the second and third lines are the

transient response, and finally the last line is the steady state solution.

At later times, t ≫ 1/(ζω0), i.e., in the steady state, only the last term survives.

The q(t) is sinusoidal, but it will lag by a phase δ.

The system will enter in resonance at ω = ω0
√

1 − 2ζ.

The value of the resonance amplitude is v0/(2ω2
0ζ

√
1 − ζ2).

At ζ = 0 (no damping), the amplitude diverges. We need to go back and study this case carefully.

Resonances at zero damping: The final solution runs into problems when we consider ζ = 0 and ω = ω0: the
coefficient of the steady state solution diverges. This is because of the assumptions we made when we were
inverting Q(s). At ζ = 0 and ω = ω0, two poles will merge and create a second order pole. Let’s take a closer
look:

lim
ζ→0, ω→ω0

1
((s + ζω0)2 + ω2

0(1 − ζ2)) (s2 + ω2
0) = 1

(s2 + ω2
0)2 . (28)

We can figure out how to inverse transform it by exploiting few features of the Laplace transforms as follows:

L−1
[

1
(s2 + ω2

0)2

]
= L−1

[
− 1

2s

d

ds

(
1

s2 + ω2
0

)]
= −1

2

∫ t

0
dττ

sin(ω0τ)
ω0

= − 1
2ω0

d

dω0

∫ t

0
dτ cos(ω0τ) = − 1

ω0

d

dω0

[
sin(ω0t)

ω0

]
= sin(ω0t) − ω0t cos(ω0t)

2ω3
0

(29)

The full solution at the resonance frequency (ω = ω0 ) with no damping (ζ = 0) is:

q(t) =
[
q0 cos(ω0 t) + q̇0

ω0
sin(ω0 t)

]
+

[
v0

2mω2
0

(sin(ω0t) − ω0t cos(ω0t))
]

. (30)

This shows that the amplitude will grow with time. In reality the model will break at some point since the
amplitude of oscillations cannot grow indefinitely.

4 LTspice simulation
One might think that using LTspice for such a simple circuit is an overkill, but this is an opportunity for us
to sharpen our tools before we attach the beast! I will pick up Ligo’s 9.1MHz bandpass filter: L = 1.8µF , coil
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resistance RL = 2.8Ω (this coil is from CoilCraft, 1008CS-182- more on that later), C = 174pF , to be driven
by a source with 23Ω resistance, representing the photodiode. Find the LTspice code here or copy it below.

Show the LTspice (.asc)

Hide
Version 4
SHEET 1 880 680
WIRE 32 48 -112 48
WIRE -112 112 -112 48
WIRE 32 192 32 128
WIRE 32 272 32 256
WIRE 160 272 32 272
WIRE 32 288 32 272
WIRE -112 400 -112 192
WIRE 32 400 32 368
WIRE 32 400 -112 400
WIRE 32 416 32 400
FLAG 32 416 0
FLAG 160 272 Vout9.1
SYMBOL res 16 32 R0
SYMATTR InstName R1
SYMATTR Value 23
SYMBOL voltage -112 96 R0
WINDOW 123 24 152 Left 2
WINDOW 39 24 124 Left 2
SYMATTR Value2 AC 1
SYMATTR SpiceLine Rser=0
SYMATTR InstName V1
SYMATTR Value 0
SYMBOL cap 16 192 R0
SYMATTR InstName C1
SYMATTR Value 174
SYMBOL ind 16 272 R0
SYMATTR InstName L1
SYMATTR Value 1800n
SYMATTR SpiceLine Rser=2.6
TEXT -280 416 Left 2 !.ac dec 10 1 50000000
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Figure 5: The circuit to simulate in LTspice.

We can run the simulation and look at the frequency response to confirm that it identically matches what we
had earlier in the interactive plot. However, this is not the main goal in this subsection.

5 Launching LTspice
We want to automate the process of running the LTspice via Python. The circuit above is saved as
“9_1MHzBP.asc.” One can run LTspice from CMD window by first browsing to the folder that contains the
.asc file and run the following command:
"C:\Program Files\LTC\LTspiceXVII\XVIIx64.exe" -Run -b 9_1MHzBP.asc

We can also use Python to trigger LTspice from Python. Find the code here It works like so:
import sys
import numpy as np
import matplotlib.pyplot as plt

import os
from scipy import interpolate, signal
import filecmp
from shutil import copyfile
import sys
from PyLTSpice.LTSpice_RawRead import RawRead

def runLTspice(simname,**kwargs):
theWD = os.getcwd()
target_dir = os.path.dirname(simname)

if( target_dir != ""):
simname = os.path.basename(simname)
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os.chdir(target_dir)

verbose = kwargs.get("verbose",False)
interpol = kwargs.get("interpolate",True)

default_ltspice_command = "C:\Program Files\LTC\LTspiceXVII\XVIIx64.exe -Run -b "
if sys.platform == "linux":

default_ltspice_command = 'wine C:\\\\Program\\ Files\\\\LTC\\\\LTspiceXVII\\\\XVIIx64.exe -Run -b '
elif sys.platform == "darwin":

default_ltspice_command = '/Applications/LTspice.app/Contents/MacOS/LTspice -b '
ltspice_command = kwargs.get("ltspice_command",default_ltspice_command)

if sys.platform == "darwin":
simname = simname.replace(".cir","")

else:
simname = simname.replace(".asc","")

if sys.platform == "linux":
os.system(ltspice_command+" {:s}.asc".format(simname))

elif sys.platform == "darwin":
os.system(ltspice_command+" {:s}.cir".format(simname))

else:
import subprocess
subprocess.run([*ltspice_command.split(), "{:s}.asc".format(simname)])

os.chdir(theWD)
runLTspice(f"C:\\Users\\451516\\Documents\\github\\aLIGOrfPhotoDetectors\\LSC RFPD Simulation Files\\BluePrints\\2S1N.asc")

This will execute simulate the circuit and save a “.raw” file in the same directory, i.e., “9_1MHzBP.raw” in
this example.

6 Parsing LTspice output
We can now parse and analyze this data using PyLTSpice library, which imports the raw file into Python.
Find the code here. It works like so:
# A simple example to read simulation results from LT spice
# Get the asc file here:https://github.com/quarktetra/LTspice/blob/main/RLCfilters/9_1MHzBP.asc
# run the following code in CMD (windows OS):
#"C:\Program Files\LTC\LTspiceXVII\XVIIx64.exe" -Run -b 9_1MHzBP.asc
# This will create the 9_1MHzBP.raw file we will use
# 9_1MHzBP.raw is also available here: https://github.com/quarktetra/LTspice/tree/main/RLCfilters
from PyLTSpice import RawRead #https://pypi.org/project/PyLTSpice/
import cmath # dealing with complex numbers
from matplotlib import pyplot as plt
import numpy as np
import os

# make sure the working directory is the one that contains the .asc file.
# if not, you can set below (requires os)
if False:

path="path to the directory"
os.chdir(path)
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filepath = '9_1MHzBP.raw' # will have several columns. We are interested in frequency and V(vout9.1)
LTR = RawRead(filepath)

## Reading file with encoding utf_16_le
## File contains 8 traces, reading 8
## Binary RAW file with Normal access
print(LTR.get_trace_names())
#print(LTR.get_raw_property())

## [’frequency’, ’V(n001)’, ’V(n002)’, ’V(vout9.1)’, ’I(C1)’, ’I(L1)’, ’I(R1)’, ’I(V1)’]
xa= LTR.get_trace("frequency")
xa=np.asarray(xa).real # converting to np for later analysis
ya= LTR.get_trace("V(vout9.1)")
ya=np.asarray(ya) # this is in complex form, cartesian apparently
ya=np.abs(ya)

plt.plot(xa, ya) #Amplitude vs Freq.
plt.grid(True, which="both", ls="-")
plt.xscale('log')
plt.xlabel("Frequency(Hz)")
plt.ylabel("Gain")
plt.title("Frequency responce of the BandPass filter")
plt.savefig('9_1MHzBP_freq_response.png', dpi=300)

plt.show()
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Figure 6: The circuit to simulate in LTspice.

This example shows the bare minimum with some manuals steps involved. Although I will leave it at that for
this section, we will later fully automate the flow so that we can pass parameters to LTspice, run the circuit,
analyzed the result and decide what to run next.
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