Scattering fermions and scalars

Abstract

Some simple calculations on scalar-spinor scattering.
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I. LAGRANGIAN AND FEYNMAN DIAGRAMS

We would like to compute the cross section of fermion-boson scattering process. The Lagrangian is given
by

1., m* 5 - - = A4
£ = 30160, — -0 + 00 — M+ hobyp — 0%,

(1)

where ¢ represents the neutral scalar particle, and 1, is a four-component spinor field with o = 1, 2,3, 4.
The scattering process we are after is given as

(k1) (p1) — ¢(k2) + (p2).

The Fenynman diagrams contributing to the process are shown in Fig. [I]
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Figure 1: Two Feynman diagrams, with amplitudes M4 and Mg, contributing to the scattering.

II. AMPLITUDES

The amplitudes for the diagrams in Fig. [I] can be written as

Ma = =T (i |i BB i)
My = =il i PEBE i),
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The numerators can be simplified by using the equation of motion for the fermions, namely:

(hr — M)U(p1) = 0. (4)
Let’s us compute the denominators :
(pr+ k)2 = M*> = p+kf+2p ki — M =M>+m?+2p; - ky — M?
= 2p1 -k 4+m?
(pr—ka)? = M* = pi+kj—2p1-ky— M> =M +m®—2p; - ky — M
72])1 . ]{32 + m2. (5)
Inserting these into Eq. , we get
—h? _
= ——U 2M U
Ma pr ey + 2 (p2) [2M + 1] U(py)
h? —
= —U 2M — K| U . 6
Mp = ot Ulns) M~ o] Up) (6)

Let’s also consider the process in the high energy limit, i.e., £ > M,m, that is we will drop the mass
terms. In this limit we can simplify the amplitudes:

My ~ 2p_1}‘l2klU(p2)%1U(p1)
My = Tkl ) g

III. SQUARING THE AMPLITUDES

The total amplitude is given by
M= My + Mg, (8)

and we will need to compute its mode-square which will involve mode-squares of the individual amplitudes
and the cross terms. We will also average over fermion polarization which will result in trace operations.
There are few trace properties of y—matrices we will make use of:

Tr([I] 4
Tr[y*y"] = 4g" (9)
Tr[y' "y = 4[g""g"7 + g"7g"" — g""g"7] (10)
Trh/{t’yg T 7577,—}-1] = Oa (11)
The mode-square of the first amplitude becomes
—2 h* 1
= ———-T
|MA| 4(])1 . kl)z 2 r [7525(:1}61%1]
ht p1 - ko
= —————pi-kips kg =h*——=. 12
2(p1'k1)2p1 e p1 -k (12)
Similarly, the mode-square of the second amplitude reads
—2 h* 1
= ———-T
’MB‘ 4(py - k1)2 2 r []62562]61%2]
ht p1 - ki
—————po - kop - ko =h* , 13
(p1- k1)2p2 2b p1 - ko (13)

where we used conservation of 4—momentum in the last step as follows:

pi+ki = patke &= p1—ka=p2—Fk
(p1+k1)* = (2+k2)® = p1-ki=p2- ko, (14)



Finally one of the cross term can be calculated as

y — =T
MaMs 4py - kip1 - k2 2 A etavats)
h4
- m[m.klpl'k2+p2'kal'kl_Pmplkykz}

Wt Ipi-ka  pi-ki piopoki ke
2 [pr-kr pioke prokipr-ke]l

(15)

IV. CROSS-SECTION

Let’s find out which term will have the dominant contribution to the cross-section. To this end, we can
treat the problem in the center of mass frame and define:

k1 (w,0,0,w)

p1 = (F,0,0,—w)

ky = (w,wsinf,0,wcosh)

P1 (E,0,0,—w). (16)

We can observe that the term 1/p; - ko will be ~ 1/M? at § = £, and therefore will be the dominating
term, since other terms will will behave as 1/E?. So the cross-section will be dominated by the following
term

pl'kl _ F+w (17)
p1-ky E-+wcosf

The differential cross-section becomes:

111 1 w 1 EF+w
d = - —— 2ht d % 1
7 222E2w8t E4+w  E4wcosh o8 (18)

which is easily integrable to
h* s
- (i) !
7 165\ 2 (19)
where s = (E + w)?.
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