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HDD average seek time

Abstract

We compute the average seek time on an hard disk drive. This will involve a bit of math related to functions
of random variables.

Index Terms

Integral, Statistics

A Hard Disk Drive (HDD) has a spinning disk and a rotating arm to position the read-write head on
target tracks, which are concentric circles. It takes a finite amount of time to move the actuator from one
point to another, which is referred to as the seek time [1]. Given the task of locating many random sectors
on a disk surface, the average time to find the tracks the sectors are located on is the average seek time,
and in this post we will compute the statistics of it. The geometry of the problem is simple: it is just a disk
with a hollow center, as shown in Fig. 1.

r1

r2
ro

ri

Figure 1: A disk of inner radius ri and outer radius ro with two sample tracks located at radii r1 and r2.

I. Averaging

Consider two tracks at radii r1 and r2 where r1,2 ∈ [ri, ro]. The radial distance between them is |r2 −r1|. If
we average over every possible position of r1 and r2 we get the average radial distance. Assuming that each
r is equally likely to happen, the density will be 1

ro−ri
, and the average radial distance can be calculated as:
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where we used the symmetries of the integral to split the range and convert it to a factor of 2.
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The integrals were a bit involved since we had nonzero values for both the upper and lower limits. It
would be wiser if we define r1,2 = ri + r̃1,2 and ∆r = ro − ri. This would give a simpler integral to deal with:
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We are treating the radius as a continuous variable although in an HDD tracks are placed in discrete steps.
Would it make any difference if we used discrete math? In that case we just need to switch to indices and
summations. Let us define r1 = ri + ∆ j, where ∆ is the radial separation of two adjacent tracks, and
j ∈ [0, N − 1] is an integer that labels the N tracks on the disk. The probability of landing on a particular
track is 1/N . The averaging becomes:
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where O( 1
N ) represents the terms of order 1/N or smaller. Since the number of tracks on an HDD disk

surface is at the order of 106, we can safely drop 1/N terms. Furthermore, since ∆ is the separation of the
tracks, N∆ was nothing but the radial distance spanned by the tracks, i.e., ro − ri. If we look at the ratio
of the mean distance to the maximum distance, ro − ri, we get:

Radial Distance
Maximum Distance = 1

3 . (4)

Now that we have shown in multiple ways that average radial distance is 1/3 of the maximal distance, we
will proceed to show that what we got is not exactly what we were looking for!

II. Sampling: tracks vs sectors

There was a non-trivial assumption in the previous section: “. . . each r is equally likely to happen”. We
baked it into our math when we took the density as 1

ro−ri
in the integrals, and when we took the density as

1/N in the summations. However, a closer inspection shows that this assumption is in conflict with uniformly
distributed sectors across the surface. We can explicitly show that if we uniformly sample from tracks and
uniformly sample from the locations on the tracks, i.e., the angles, the resulting distribution on the surface
will not be uniform. Let’s do a simulation to confirm. We simply sample radius values in the range [ri, ro]
from a uniform distribution, and the angle values in the range [0, 2π], and convert them into Cartesian
coordinates x and y to plot the density of points on the disk.
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Figure 2: The probability density of randomly selected points on the disk. The steep gradient shows that
uniformly sampled radius and uniformly sampled angle do not yield a uniform distribution on the disk.

As shown in Fig. 2, uniformly sampling radius and angle does not yield a uniform distribution on the
disk. This intuitively follows from the fact that sampled points are spreading to a wider area at larger radii.
In order to restore the uniform distribution on disk surface, we have to abandon the assumption that “. . .
each r is equally likely to happen”.

III. The proper density
If we think a bit harder, we can fix this. Consider a small zone from r to r + δr, with δr ≪ r. The

area of this zone is basically the circumference times the width, that is 2πr δr. So the area is growing ∝ r.
Therefore the probability of landing on this band should grow ∝ r, i.e., it is not constant. In fact it should be
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r2
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i

, (5)

so that it yields 1 when integrated from ri to ro. This also makes sense for HDDs. Assuming that the data
is uniformly distributed on the disk surface, more data will be on the outer radius of the disk just because
there is more area there. Therefore, as the head looks for random sectors, it will find them more on the
outer radius, i.e., larger radii tracks will enter into the averaging with larger weights. We have to go back
to square one and do the math all over again with the proper probability distribution for tracks. We plug
this into the averaging integrals to get:
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The result suggests that the ratio of the mean distance to the maximum distance is
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. (7)
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This is not as elegant as a simple fixed factor of 1/3, but, nevertheless it is the correct one as we will support
further below.

Figure 3: The ratio of the mean distance to the maximum distance vs κ = r0
ri

. The marked κ value of 2.43
corresponds to typical disk sizes of outer radius ro = 1.7" and inner radius rk = 0.7" .

IV. Brute force solution

We can always use Monte Carlo simulations to compute the results. We can select x and y in the range
[−ro, ro] from uniform distributions, and reject the x, y pairs that fall outside of the disk. That will certainly
result in a uniform coverage of the disk as shown in Fig. 4.
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Figure 4: The probability density of points constructed from x and y values selected from uniform
distribution. Once the points that fall out of the disk area are rejected, the disk is uniformly covered.
We use ro = 1.7" and inner radius rk = 0.7" in the simulation.

We can then select a pair of points r⃗1 and r⃗2, and build the histogram of |r2 − r1|, as shown in Fig. 5.
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Figure 5: The distribution of the difference of two randomly chosen radii r2 and r1

Computing the mean value of the distribution and dividing it by the maximum distance, we get 0.3219
to be compared to 0.3218 as predicted in Eq. (7).

V. Shut up and calculate!

There is a famous saying among quantum physicist: in most cases quantum behavior becomes so bizarre
that there is no intuition that can help you, hence you have to just “shut up and calculate.” I sometimes
feel the same way with functions of random variables. In this particular example, we do have an intuitive
expectation on the probability distributions and finding out that the distribution we originally used was
not uniform on the disk saved the day. However, we would have been in deep trouble if this were a three
dimensional problem. It would have been hard to visualize the distributions and/or our intuition might have
just failed us. Can’t we just shut up and calculate it formally from the first principles of random variables?
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Figure 6: Sometimes it is best to shut up and calculate. Follow the first principles of the theory of random
variables and they will lead you to the answer- assuming you don’t screw up the math on the way.

Let us first define the cumulative distribution function F (r, ϕ). We want it to cover the disk uniformly:
its increase, let’s call it dF , should be with a uniform rate as we add small portions of area, dA = rdrdϕ.
That is:

dF

dA
= dF

rdrdϕ
= c, (8)

where c is the normalization constant. It is simply inverse of the disk area:

c = 1∫∫
disk

dA
= 1

π(r2
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i ) (9)

Since there is no ϕ dependence, we can integrate it out and define the radial probability density function:

f(r) ≡ dF

dr
=
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i

, (10)

which is identical to Eq. (5).
We can derive the same density function starting from our trusted uniform distribution. Consider two
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i
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(
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.

The measure of the integral will transform with the Jacobian matrix
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Upon integrating out ϕ, we pick up a factor of 2π, and get the same expression for f(r) as we had in Eqs.
(10) and (5).

We have shown in three different ways that the radius, R, will be a random variable with density f(r).
Then we take two such random radii and calculate their radial separation: S ≡ |R1 − R2|, which is yet
another random variable. Figure 5 shows the simulation results for S, and it looks deceptively like a line.
However, we do know it can’t be an exact line because then it would have made it a triangle and a triangle
has its center of mass at 1/3 of the distance from the edge. But we have shown that the real answer deviates
from 1/3. So we should expect some higher order terms in play.

If we really wanted we could calculate the exact form of the density function of the random variable S.
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It is best to start from the cumulative distribution:

FS(s) = P (|r1 − r2| < s) =
∫∫

|r2−r1|<s

dr1dr2f(r1)f(r2). (12)

We need to figure out the domain for which |r1 − r2| < s is satisfied. It is the green shaded area in Fig. 7.
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Figure 7: The domain of interest for integration. In the green shaded area |r2 − r1| < s is satisfied.

Therefore, the cumulative probability function of the difference can be written as

FS(s) =
∫∫

|r2−r1|<s

dr1dr2f(r1)f(r2) =
∫∫
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dr1dr2f(r1)f(r2) = 1 −
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= 1 − 2
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from which we can get the probability density by differentiating with respect to s:

fS(s) = ∂

∂s
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3 (r2
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[
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i )s + s3]
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The distribution does differ from a line with a cubic term. fS(s) completely defines the statistics of the radial
distance of two randomly selected sectors. We can verify that it reproduces the average value by computing

1
ro−ri

∫ ro−ri

0 sf(s)ds, which indeed gives the result in Eq. (7).

VI. Seek time
This post is titled “HDD average seek time,” but so far we have been computing distances. The relation

between the distance and the time would have been in a one to one relation if the head moved with constant
speed on the radial direction, none of which is exactly true. The head rotates around a pivot point that
sits outside the disk, and follows an arc of a circle. Furthermore, it does not move with constant speed as
it starts from zero speed, accelerates, slows down and settles at the destination track. Therefore the seek
time includes higher order terms. However, we can use the the ratio of average distance to the maximum
distance as a proxy to estimate the ratio of average seek time to the time it would take the head to move
between the opposite edges of the disk, i.e., the maximum seek time.

VII. Conclusions
HDDs are complicated beasts and in this post we over-simplified few things. An important simplification

we made was related to the assumption that the data is uniformly spread on the disk. This is not completely
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accurate. The capacity density of HDD surfaces has some nontrivial radial dependence [2]. This is an artifact
of the skew of the read-write head with respect to the track direction. There are many other effects, which
are beyond the scope of this post, that will cause nonuniform distribution of capacity and, in turn the data.
In order to address such effects one needs to define f(r) to incorporate the variations and do the math
accordingly.

The bottom line is that it is fair to say that average seek time is about 1/3 of the full seek time with
certain small and nontrivial deviations.
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