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Separation of variables in spherical coordinates

Abstract
Solving Laplace equation in spherical coordinates.

Index Terms
Integral, Statistics

We would like solve the Laplace’s equation in spherical coordinates as illustrated in Fig. 1.
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Figure 1: The spherical coordinates.

In the spherical coordinates, the Laplace equation reads:
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]
ψ. (1)

We can separate the variables as ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ):
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Since the left-hand side of Eq. (3) depends on r and θ only, and the right one depends on ϕ only, overall
they can only be equal to a constant, which we will call m2. This separates out the Φ function. Furthermore,
since ϕ is the angle, the solutions have to be 2π periodic, which gives:

Φ(ϕ) = eimϕ. (4)

Putting this back in Eq. (3) and dividing the it by sin2 θ we get:

1
R

d
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(
r2 dR
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)
= − 1

sin θΘ
d

dθ

(
sin θdΘ
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)
− m2

sin2 θ
. (5)

Similarly, since the left-hand side of Eq. (5) depends on r only, and the right one depends on θ only, overall
they can only be equal to a constant, which we will call c.

I. Radial dependence

The form of the solution for R(r) is easy to guess since the derivatives are balanced by the powers of r,
and therefore, a function of the form rl will preserve its form up to a coefficient.

d

dr

(
r2 dr

l

dr

)
− crl = [l(l + 1) − c] rl = 0 =⇒ c = l(l + 1). (6)

However, notice the unexpected symmetry of l(l+ 1) under l → −l− 1. This means, if rl is a solution, so is
r−l−1. This suggests the following form of solution for R:

R(r) = alr
l + bl

rl+1 . (7)

II. Angular part

Putting this back in Eq. (5) yields
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Now define cos θ = x, which gives d
dθ = dx

dθ
d

dx = − sin θ d
dx and insert this back in Eq.(8):
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Let’s first attempt to solve this for m = 0 using power series expansion[1]:

Θ(x) =
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k. (10)

Inserting this back to Eq. (9) we get:
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This implies

ck+2 = k(k + 1) − l(l + 1)
(k + 2)(k + 1) ck = (k − l)(l + k + 1)

(k + 2)(k + 1) ck, (12)

which is the recurrence equation for the expansion coefficients.
This is a remarkable equation since it has profound consequences. Earlier in this blog, we looked at the

Quantum Harmonic Oscillator and showed that for a similar series expansion to converge, we had to have
the energy quantized. In this particular problem, until this point, we have no indication of l being an integer.
But now, we see that it has to be an integer so that the series truncates for k > l (for every other k). That’s
the first observation.

The second observation is associated with the parity symmetry of the original differential Eq. (9), which
is invariant under x → −x upto the overall sign. This shows that the solutions will also be eigenstates of
the parity operator, i.e., odd and even k terms should not mix.

We have a couple of ways of terminating the series. The first one is what we have discussed above, i.e.,
settin l to an integer k∗, which will zero out every other ck. The ck’s, with k > l, not addressed by this
truncation need to be eliminated directly by their root coefficient, c0 or c1. To be more specific, take an
example l = 1. The ck’s with odd k quickly terminate after k = 1: c1, 0, · · ·. The even ones will keep growing:
c0, αc0, βαc0, · · ·. The only way to tame this series is by killing it at its root, i.e., by setting it a0 = 0 so that
all the even terms drop out. This shows that even odd powers of x will not mix preserving respecting the
parity symmetry of the original equation.

From Eq. (12), we can explicitly write the fist few Legendre polynomials:

P0(x) = 1,
P1(x) = x,

P2(x) = 1
2(3x2 − 1),

P3(x) = 1
2(5x3 − 3x),

P4(x) = 1
8(35x4 − 30x2 + 3). (13)

Having shown that Legendre polynomials solve the differential equation (with m = 0),

(1 − x2)d
2Pl

dx2 − 2xdPl

dx
+ l(l + 1)Pl = 0, (14)

we now need to address the full equation with m ̸= 0: The idea would be to repeatedly apply derivative m
times to create the m2 term. For this, we will need the Leibniz’s formula:
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dxm
[f(x)g(x)] =
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k=0
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n

k

)
dkf

dxk

dn−kg

dxn−k
(15)

Let’s dive into the differentiation:
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dxm
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dx2 − 2xdPl

dx
+ l(l + 1)Pl

]
= (1 − x2) d

m

dxm
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dx2 +m
d

dx
(1 − x2) d

m−1

dxm−1
d2Pl

dx2 + m(m− 1)
2

d2

dx2 (1 − x2) d
m−2

dxm−2
d2Pl

dx2

−2x dm

dxm

dPl

dx
− 2m d

dx
(x) d

m−1

dxm−1
dPl

dx
+ l(l + 1) d

m

dxm
Pl

= (1 − x2)u′′ − 2mxu′ −m(m− 1)u− 2xu′ − 2mu+ l(l + 1)u
= (1 − x2)u′′ − 2(m+ 1)xu′ −m(m+ 1)u+ l(l + 1)u
= (1 − x2)u′′ − 2(m+ 1)xu′ − (l −m)(l +m+ 1)u, (16)

where u ≡ dmPl

dxm . We still need to modify the equation further so that it matches Eq.(9). First of all, we note
that the equation we want to get at was self-adjoint, we kind of destroyed it as we acted with dm

dxm . Let’s
restore it and see where it takes us.
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A. Sturm–Liouville theory
We are going to use some machinery from Sturm–Liouville theory on second order differential equations.

Consider the second order differential operator L[1]:

Lu =
(
p0(x) d

2

dx2 + p1(x) d
dx

+ p2(x)
)
u. (17)

We are going to define the inner product in the function space as an integral in a range [a, b].

⟨u|L|u⟩ ≡
∫ b

a

dxu(x)Lu(x) =
∫ b

a

dxu(x)
(
p0

d2

dx2 + p1
d

dx
+ p2

)
u =

∫ b

a

dx
(
p0uu

′′ + p1uu
′ + u2p2

)
. (18)

We can integrate Eq.(18) by parts. Let’s look at each term one by one:

up0u
′′ = u

d2

dx2 (p0u) − d

dx
(up′

0u) + 2up′
0u

′

up1u
′ = −u d

dx
(p1u) + d

dx
(up1u). (19)

Putting this back in Eq.(18) gives:

⟨u|L|u⟩ = [u(p1 − p′
0)u]ba +

∫ b

a

dxu

(
d2

dx2 (p0u) − d

dx
(p1u) + p2u

)
= [u(p1 − p′

0)u]ba +
∫ b

a

dxuL̄u, (20)

where the adjoint operator L̄ is defined as:

L̄u = d2

dx2 (p0u) − d

dx
(p1u) + p2u. (21)

Although L̄u looks pretty different from Lu in Eq. (17), they can actually be the same if p1 = p′
0. Such L

operators are self-adjoint. Furthermore, note that the boundary term also drops out for self-adjoint operators.
The good news is that if an equation is not self adjoint, it can be converted into that form if it gets

multiplied by the following factor:
1

p0(x)exp
{∫ x

dt
p1(t)
p0(t)

}
. (22)

Let’s revisit Eq. (16) to find the factor that will make the equation self-adjoint:

1
1 − x2 exp

{
−

∫ x

dt
2(m+ 1)t

1 − t2

}
= 1

1 − x2 exp
{

(m+ 1)
∫ x d(1 − t2)

1 − t2

}
= (1 − x2)m. (23)

We will take this factor, multiply Eq. (16) with it to get:

d

dx

(
(1 − x2)m+1u′) − (l −m)(l +m+ 1)u = 0. (24)

Finally, we will want to absord half power of that coefficient into u by defining

v(x) = (1 − x2) m
2 u(x) ⇐⇒ u(x) = (1 − x2)− m

2 v(x), (25)

to get

u′ =
[
v′ + mvx

1 − x2

]
(1 − x2)− m

2 ,

u′′ =
[
v′′ + 2mv′x

1 − x2 + mx

1 − x2 + m(m+ 2)x2v

(1 − x2)2

]
(1 − x2)− m

2 . (26)

The new function v satisfies the following equation:



5

(1 − x2)d
2v

dx2 − 2xdv
dx

+
(
l(l + 1) − m2

1 − x2

)
v = 0, (27)

which is identical to Eq. (9). In conclusion, the angular part of the solution is given by the associated
Legendre polynomials as below:

Pm
l (x) = (1 − x2) m

2
dm

dxm
Pl(x). (28)

III. Full solution
Note that the highest power in Pl is l, and for m > l, we run out of x’s to differentiate. This automatically

limits |m| to l. Putting all pieces together, the full solution to the Laplace equation reads:

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) =
∞∑

l=0

l∑
m=−l

(
almr

l + blm

rl+1

)
Pm

l (cos θ)eimϕ. (29)
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