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Time dependent spin-spin coupling

Abstract

Derivation of Thomas-Reiche-Kuhn sum rules for position operator.

Index Terms

operator algebra , perturbation theory,angular momentum

I. Problem Statement

Consider two spin-1/2 particles in the state with S1z = 1/2 and S2z = −1/2 at time t = −∞. They are
then subject to an interaction of the form

H1 = a0e
−t2/τ2

S1 · S2, (1)

where a0 and τ > 0 are constant parameters. We want to calculate the probability of finding the system in
the state with S1z = −1/2 and S2z = 1/2 at t = ∞.

II. The exact solution

We first note that the Schrodinger equation can formally be solved as

ψ(t) = e
−i

∫ t

t0
dt̃H(t̃)

ψ(t0). (2)

However, it is important to mention that if the Hamiltonian does not commute with itself at different times,
[H(t1), H(t2)] ̸= 0, then we cannot exponentiate H to get the solution above. In that case we would have
to solve the differential equation honestly. Since the Hamiltonion in Eq. (1) commutes with itself at any
different times, Eq. (2) will work. Now we need to handle exponential of an operator, H. It could be dealt
with an infinite Taylor expansion, but that would be painful. A better method is to consider the problem in
the eigenbasis of H. We expand the initial state in terms of the eigenstates of H so that H in the exponent
can be replaced by its eigenvalues. The initial state is | ↑↓⟩. We will need the Clebsch − Gordan coefficients
for 2-spin 1/2 particles.

Let us remember what the Clebsch − Gordan are: First of all |1,±1⟩ is trivial, the states have to be both
↑ (↓) so that spin along z is +1 (−1). The hard ones are |0, 0⟩ and |1, 0⟩. They are superposition of | ↑↓⟩ and
| ↓↑⟩ so that spin along z is zero. We can first figure out the coefficients for |0, 0⟩, which is the state to be
annihilated by S− = S1− +S1−. Applying this onto this state will immediately reveal that |0, 0⟩ = |↑↓⟩−|↓↑⟩√

2 .
And |1, 0⟩ has to be orthogonal to |0, 0⟩ which means |1, 0⟩ = |↑↓⟩+|↓↑⟩√

2 up to a phase, which is irrelevant.
From here we can get inverse Clebsch − Gordan coefficients to expand | ↑↓⟩, which gives

| ↑↓⟩ = |0, 0⟩ + |1, 0⟩√
2

. (3)

H can be written as

H1(t) = a0e
− t2

τ2 S1 · S2 = a0e
− t2

τ2
J2 − S2

1 − S2
2

2
= a0

2 e
− t2

τ2 (J2 − S2
1 − S2

2). (4)

email: quarktetra@gmail.com
Find the interactive HTML-document here.

mailto:quarktetra@gmail.com
https://tetraquark.netlify.app/post/time_dependent_spin_spin_coupling/time_dependent_spin_spin_coupling/index.html


2

We know that S2
1 = S2

2 = 3/4. Then,

|ψ(t)⟩ = exp

[
−i

∫ t

t0

dt̃
a0

2 e
− t̃2

τ2 (J2 − S2
1 − S2

2)
]

|0, 0⟩ + |1, 0⟩√
2

= exp [−if(t)(2 − 3/4 − 3/4)] |1, 0⟩√
2

+ exp [−if(t)(0 − 3/4 − 3/4)] |0, 0⟩√
2

= e− if(t)
2

|1, 0⟩√
2

+ e
3if(t)

2
|0, 0⟩√

2
, (5)

where f(t) ≡
∫ t

t0
dt̃a0

2 e
− t̃2

τ2 . We can get the probabilities of measurements in this basis, or we can go back
to the original one which is more transparent. We expand |0, 0⟩ and |1, 0⟩ in spin up-down basis to get

|ψ(t)⟩ =
[
e− if(t)

2 + e
3if(t)

2

] | ↑, ↓⟩
2 +

[
−e

3f(t)
2 + e− if(t)

2

] | ↓, ↑⟩
2

= ei/2f(t) (cos[f(t)]| ↑, ↓⟩ − i sin[f(t)]| ↓, ↑⟩) . (6)

The probabilities become

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = cos2[f(t)], Prob(| ↑, ↓⟩ → | ↓, ↑⟩) = sin2[f(t)]. (7)

III. The solution with perturbation theory

We can approach the from the perspective of time dependent perturbation theory. The fundamental object
we have to compute is

dfi(t) = −i
∫ t

t0

dt̃eiE
(0)
fi ⟨f |H1(t̃)|i⟩ + δfi. (8)

For this problem we are not calculating a function of an operator, operator appears by itself, and it is easy
to get the answer in this basis using

2 S1 · S2 = S1−S2+ + S1+S2− + 2S1zS2z. (9)

For f = i only S1zS2z contributes to give

df=i(t) = −i
∫ t

t0

dt̃eiE
(0)
fi

t̃⟨↑, ↓ |H1(t̃)| ↑, ↓⟩ + 1 = 1 + if(t)
2 . (10)

For f = | ↓, ↑⟩ only S1+S2− contributes to give

df ̸=i(t) = −i
∫ t

t0

dt̃eiE
(0)
fi

t̃⟨↓, ↑ |H1(t̃)| ↑, ↓⟩ = −if(t). (11)

There are two important points here. First one is E(0)
fi . Remember that superscript (0) reminds us that it

comes from the differences of background energy originating from H0, and for this case E(0)
fi = 0. Second

point is rather technical, but still important. If you calculate probabilities from df=i(t) and df ̸=i(t), you
see that the sum is not equal to 1. This is because the coefficients are not normalized yet. The normalized
amplitudes would be the ones above divided by the normalization. The corresponding probabilities are

f2(t)
1 + 5f2(t)/4 ,

1 + f2(t)/4
1 + 5/4f2(t) . (12)

Note that this normalization is too precise, it is like giving a result of a division with 2 decimal points
although the numbers you started with have 1 decimal point. In other words the procedure we follow is
correct only in the f2 order, and we need to expand the result and drop terms higher than f2 to get

1
1 + 5f2(t)/4 ≃ 1 − 5f2(t)/4. (13)

Therefore, the probabilities with the correct accuracy are given by

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = 1 − f2(t), and Prob(| ↑, ↓⟩ → | ↓, ↑⟩) = f2(t). (14)
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Note that the normalization procedure did not change Prob (| ↑, ↓⟩ →↓, ↑⟩) since it was already of f2 order,
it just changed the other one so that total probability is 1. In all the other transitions are ruled out, we
could use this idea to get

Prob (| ↑, ↓⟩ → | ↑, ↓⟩) = 1 − Prob (| ↑, ↓⟩ → | ↓, ↑⟩) . (15)

However, if there are more than two possible transitions, we will have to normalize the coefficients first.
Note that perturbative result is in agreement with the exact one in Eq. (7) at f2 order if f ≪ 1. This is
also the requirement from the perturbation side since we approximated the solution to the integral equation
with the first trial function f(t). If f ≪ 1, cutting the trial at the first order is a good approximation to the
exact solution.
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