
Hacking into a wheelchair controller

Quark Tetra

2021-03-15

Abstract
Hacking into a wheelchair controller.

1 Introduction

I wanted to build a heavy-duty bot that I can use for various purposes. I didn’t want to reinvent the wheel,
and decided to look for a sneaky way of building one. My first idea was to use an old wheelchair base. I was
planning to salvage the wheels and the motors only and purchase a motor driver unit. Then I came up with
a very sneaky idea. What if I could hack into the joystick controller and use the whole system? This is the
story of how I converted an old wheelchair I bought from Craigslist to a remote controlled bot for less than
$10.

1.1 Parts

2x Arduino Uno boards

2x nrf24l01 transceivers

one joystick, or joystick shield

2x 2.2K resistors

2x 33µF capacitor.

1.2 A quick tour

Browse through the images to see the parts used in the build. It is a set up based on a pair of Arduino Uno
and nrf24l01. The idea is to fool the wheelchair controller to think that the signal it is receiving is coming
from its own joystick. This won’t work for joysticks that use sophisticated digital communication with the
controller. It will work for analog joysticks that simply produce two anolog signals to encode the position of
the joystick knob.

Figure 1: Arduino Uno and nrf24l01.

1.3 The joystick terminals

A resistive joystick encodes the position of its knob using to signals. I first probed the voltages on the four
joystick terminals, two of which were simply the power lines (5V and ground). The other two lines encode
the position. When the knob is at its center position, both lines showed 2.5V. If I push the knob all the way
up(down) the voltage becomes 4V (1V). The same range applies to the other line when the knob is pushed
all the way to the right or left. The trick here is to cut the two signal lines, and connect them to the output
of Arduino.

1

2 Transmitting signals

nrf24l01 with Arduino uno is a great and very cheap method to send signals. We want to have a hand-held
unit with a joystick and send the position of the joystick to the receiver. The great thing is that there is a
shield for that! There is no soldering involved on the transmitter side, just drop in the shield on top of Uno.
Although you won’t need to worry about the connections, they are described the code as well. You can find
the code in my repository or copy it below.

Show the transmitter code

Hide

//
// Visit http://garagegravity.blogspot.com/ for more projects
//A simple code to transmit joystick x and y values with Arduino Uno and nrf24l01
// get the librarry here: https://github.com/nRF24/RF24
// will work with the "arduino joystick shield with nrf24l01"
// NRF Pin Arduino Pin
// Vcc 3.3V DO NOT connect to 5V, it will damage the transmittet unit!
// CS 10
// MOSI 11
// GND GND
// CE 9
// CSN 10
// SCK 13
// MISO 12
// Note that CE and CS pins can be changed, if needed.
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#define CE_PIN 9 // these are the default connections for the joystick shield
#define CSN_PIN 10 // these are the default connections for the joystick shield
#define JOYSTICK_X A0 /// Connect Joystick output 1 to A0
#define JOYSTICK_Y A1 /// Connect Joystick output 1 to A1
const uint64_t pipe = 0xE8E8F0F0E1LL;
RF24 radio(CE_PIN, CSN_PIN);
int joystick[2];
void setup()
{
Serial.begin(9600);
radio.begin();
radio.openWritingPipe(pipe);
}
void loop()
{
joystick[0] = analogRead(JOYSTICK_X);joystick[1] = analogRead(JOYSTICK_Y);
radio.write(joystick, sizeof(joystick));
Serial.print("Sending: X="); Serial.print(joystick[0]); Serial.print("; Y="); Serial.println(joystick[1]);
}
///

If you do not have the joystick module, you can create your own with the following connections:

NRF

Arduino

2

https://github.com/quarktetra/Arduino/blob/master/Arduino_RF_nrf24l01/arduino_uno_transmitter_nrf24l01/arduino_uno_transmitter_nrf24l01.ino

Vcc

3.3V*

CS

10

MOSI

11

GND

GND

CE

9

SCK

13

MISO

12

Joystick

Arduino

Vcc

5V

GND

GND

Output 1

A0

Output 2

A1

Figure 6: Transmitter unit when built from parts rather than the shield.

3 Receiving signals

Find the code in my repository or copy it below.

Show the receiver code

Hide

// Visit http://garagegravity.blogspot.com/ for more projects
//A simple code to receive joystick x and y values with Arduino Uno and nrf24l01
// and to convert the values to Voltages using PWM (2.2K resistor and 33uF capacitor as a low pass filter will do the trick)
// note the CS and CE pin connections
// NRF Pin Arduino Pin
// Vcc 3.3V DO NOT connect to 5V, it will damage the transmittet unit!
// CS 8

3

https://github.com/quarktetra/Arduino/blob/master/Arduino_RF_nrf24l01/arduino_uno_transmitter_nrf24l01/arduino_uno_transmitter_nrf24l01.ino

// MOSI 11
// GND GND
// CE 7
// SCK 13
// MISO 12
// Note that CE and CS pins can be changed, if needed.
#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>
#define CE_PIN 7
#define CSN_PIN 8
const uint64_t pipe = 0xE8E8F0F0E1LL;
RF24 radio(CE_PIN, CSN_PIN);
int joystick[2];// will store joystick doublet: first entry is the X value, second is the Y value
int lout= 3;// Will light up an LED when signal is received-very useful for debugging
int yout= 5; //PWM output for X value
int xout= 6;//PWM output for Y value

float central_valuex = 511.0; // this should be 512 theoretically but it may deviate from it a bit
float central_valuey = 502.0; // this should be 512 theoretically but it may deviate from it a bit

/// Joystick values are 10 bit numbers ranging from 0-1023
/// We will map these numbers a range so that when converted to voltage we get Vmin and Vmax
//Vmax=4V for this example. We also assume center voltage is 2.5. The voltage will range from 1V to 4V in this example, i.e 1.5V swing

float Vmax=4.00;
float mindelta=10;// incoming joystick values may fluctuate a bit and more importantly as you try move the
// joystick along one axis only it may move on the other axis a bit as well. We will put a threshold for
// minimum deviation to clean out unintentional movement

int debugmode=1; /// use this to turn serial commumication on and off

int joyx;//the number to send to the PWM output. Min value is dictated by Vmin, max is by Vmax
int joyy;
void setup()
{

pinMode(lout, OUTPUT);
analogWrite(lout, 0);
Serial.begin(9600);
delay(100);
Serial.println("Nrf24L01 Receiver Starting");
radio.begin();
radio.openReadingPipe(1,pipe);
radio.startListening();

}

void loop()
{

if(radio.available())
{

analogWrite(lout, 255);

4

radio.read(joystick, sizeof(joystick));
/// calculate joyx and joyy
if (abs(joystick[0]-central_valuex)<mindelta)
{joyx=128;}// if the joystickx did not deviate enough from mid point set output to 128, which is 2.5V
else{joyx=128+127*(joystick[0]-central_valuex)*((Vmax-2.5)/2.5)/(1023-central_valuex);}

if (abs(joystick[1]-central_valuey)<mindelta)
{joyy=128;}// if the joysticky did not deviate enough from mid point set output to 128, which is 2.5V

else{joyy=128+127*(joystick[1]-central_valuey)*((Vmax-2.5)/2.5)/(1023-central_valuey);}

analogWrite(xout, joyx);analogWrite(yout, joyy); // send the final results to the ports
if(debugmode==1){
Serial.print("Received: X=");Serial.print(joystick[0]); Serial.print("; Y=");Serial.print(joystick[1]);
Serial.print("; Converted to: Xpwm=");Serial.print(joyx);Serial.print("; Ypwm=");Serial.println(joyy);
}

}
else {delay(300);Serial.println("No radio");analogWrite(lout, 0);analogWrite(yout, 128); analogWrite(xout, 128);}//wait 0.2 sec before deciding there is no radio

}

As we are going to convert the received signals to analog, the receiver requires a bit of soldering work. The
connections are very simple and they are described in the code.

Figure 7: The finished receiver unit. The resistors and capacitors are used to convert PWM to DC.

The conversion of PWM to DC is done by the simple circuit below.

−
+v

+ −
R +

−

C

i

Figure 8: Converting Pulse Width Modulated (PWM) signal to its DC value. The capacitor charges to the
mean value of the PWM. For 255 this will be the half of the supply voltage, i.e., will yield 2.5V.

4 Putting it all together

In principle one can keep the wheelchair as is, at least the base of it. However, I wanted to have something a
bit smaller, and I kept the controller unit, the joystick and the motors&wheels. I built an aluminum frame
with a wooden platform and used a pair of relatively small batteries. I made it all modular so that I can
easily remove the batteries, or the circuit for easier transportation. See below for the finished bot, which has
become my cat’s favorite spot. It is a 3-wheeler with a caster wheel at the back. I located all the heavy parts
close to the front wheel axis to maximize traction. I also left a large space at the back for a laptop. I am
planning to make this autonomous!

Figure 9: Connecting the receiver to the wheelchair parts. Cat or the ruler for scale! Note the cables coming
out of the original joystick. The wheelchair controller board, which is hidden at the bottom of the platform,
still thinks that the signal is coming from the joystick. But in reality, it is coming from the Arduino board!

Figure 10: The final product!

5

	Introduction
	Parts
	A quick tour
	The joystick terminals

	Transmitting signals
	Receiving signals
	Putting it all together

