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Wiener Khinchin Theorem

Abstract
A proof of Wiener Khinchin theorem.

Index Terms
Wiener Khinchin Theorem

Consider a random variable x(t) which evolves with time. The auto correlation function is defined as:

C(τ) = ⟨x(t)x(t + τ)⟩. (1)

The Fourier transform of C(τ) is defined as

Ĉ(ω) =
∫ ∞

−∞
dτe−iωτ C(τ). (2)

Let us define the truncated Fourier transform of x(t) as

x̂T (ω) =
∫ T

2

− T
2

dtx(t)e−iωt, (3)

and the truncated spectral power density as

ST (ω) = 1
T

⟨|x̂T (ω)|2⟩. (4)

The spectral power density is the limiting case of ST (ω):

S(ω) = lim
T →∞

ST (ω) = lim
T →∞

1
T

⟨|x̂T (ω)|2⟩. (5)

The Wiener-Khinchin Theorem states that if the limit in Eq. (5) exists, then the spectral power density
is the Fourier transform of the the auto correlation function, i.e., the following equality holds:

S(ω) =
∫ ∞

−∞
dτe−iωτ C(τ). (6)

We start from the average of |x̂T (ω)|2

|x̂T (ω)|2 =
∫ T

2

− T
2

∫ T
2

− T
2

dt′dt⟨x(t′)x(t)⟩e−iw(t′−t)

=
∫ T

2

− T
2

∫ T
2

− T
2

dt′dtC(t′ − t)e−iω(t′−t). (7)

Note that C(t′ − t)e−iω(t′−t) depends only on the difference of the parameters.
The argument of the function begs for a change of coordinates:

u = t′ − t, and v = t + t′, (8)

and the associated inverse transform reads:

t′ = u + v

2 , and t′ = v − u

2 . (9)

This transformation will rotate and scale the integration domain as shown in Fig. 1.
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Figure 1: The integration domain in the t − t′ domain (left) and u − v domain(right). Since there is no v
dependence, v integration gives the height of the green and blue slices.

The equation of the top boundary on the right can be written as v = T −u, and on the left as $ v= T+u$.
We can actually combine them as v = T − |u|. We can do the same analysis for the lower boundaries to see
that the height of the slices at a given u is 2(T − |u|). This will help us easily integrate v out as follows:

I =
∫ T

2

−T
2

∫ T
2

−T
2

dt′dtf(t′ − t) =
∫∫

Su,v

∣∣∣∣ ∂(t, t′)
∂(u, v)

∣∣∣∣ dvduf(u)

=
∫ T

−T

2(T − |u|) × 1
2dvduf(u) =

∫ T

−T

duf(u)(T − |u|), (10)

where
∣∣∣ ∂(t,t′)

∂(u,v)

∣∣∣ = 1
2 is the determinant of the Jacobian matrix associated with the transformation in Eq. (9).

Therefore, setting u = τ , we get

|x̂T (ω)|2 =
∫ T

−T

dτe−iωτ C(τ)(T − |τ |). (11)

Taking the average we have the required result:

S(ω) = lim
T →∞

ST (ω) = lim
T →∞

1
T

⟨|x̂T (ω)|2⟩

= lim
T →∞

1
T

∫ T

−T

dτe−iωτ C(τ)(T − |τ |) =
∫ ∞

−∞
dτe−iωτ C(τ), (12)

which completes the proof.


