L^2 is a Hermitian operator

2025-09-04

A proof that square of the angular momentum vector is a Hermitian operator.

blog: https://tetraquark.vercel.app/posts/angular_momentum_squared/?src=pdf email: quarktetra@gmail.com

We need to show that

$$\int \psi_1^*(L^2\psi_2)d\Omega = \left[\int \psi_2^*(L^2\psi_1)d\Omega\right]^*,\tag{1}$$

where

$$L^{2} = -\left(\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \sin\theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}}\right). \tag{2}$$

The second part of L^2 operator is easier to handle. The relevant part of the integral is the ϕ integral, which can be computed as follows

$$\int_{0}^{2\pi} \psi_{1}^{*} \left[\frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \psi_{2} \right] d\phi = \int_{0}^{2\pi} \frac{\partial}{\partial \phi} \left[\psi_{1}^{*} \frac{1}{\sin^{2} \theta} \frac{\partial}{\partial \phi} \psi_{2} \right] d\phi - \int_{0}^{2\pi} \left(\frac{\partial}{\partial \phi} \psi_{1} \right)^{*} \left(\frac{1}{\sin^{2} \theta} \frac{\partial}{\partial \phi} \psi_{2} \right) d\phi
= - \int_{0}^{2\pi} \frac{\partial}{\partial \phi} \left[\left(\frac{\partial}{\partial \phi} \psi_{1} \right)^{*} \frac{1}{\sin^{2} \theta} \psi_{2} \right] d\phi + \int_{0}^{2\pi} \left(\frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \psi_{1} \right)^{*} \psi_{2} d\phi
= \left[\int_{0}^{2\pi} \left(\frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \psi_{1} \right) \psi_{2}^{*} d\phi \right]^{*},$$
(3)

where we dropped the first terms in the first two lines as the they are the difference of the integrand at $\phi = 2\pi$ and $\phi = 0$, and that is zero as ϕ coordinate is 2π periodic.

The first part of L^2 operator seems to be harder because when we integrate by parts $\frac{\partial}{\partial \theta}$ will act on $\sin \theta$, which will complicate the problem. However, we can avoid it by a change of variable $u = \cos \theta$. The relevant part of the integral is the $d\cos \theta$ integral, and with the above transformation it becomes,

$$\int_{0}^{\pi} \psi_{1}^{*} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \psi_{2} \right) d \cos \theta = \int_{-1}^{1} \psi_{1}^{*} \frac{\partial}{\partial u} \left((1 - u^{2}) \frac{\partial}{\partial u} \psi_{2} \right) du$$

$$= - \int_{-1}^{1} \frac{\partial}{\partial u} \psi_{1}^{*} \left((1 - u^{2}) \frac{\partial}{\partial u} \psi_{2} \right) du$$

$$= - \int_{-1}^{1} \left((1 - u^{2}) \frac{\partial}{\partial u} \psi_{1}^{*} \right) \frac{\partial}{\partial u} \psi_{2} du$$

$$= \int_{-1}^{1} \frac{\partial}{\partial u} \left((1 - u^{2}) \frac{\partial}{\partial u} \psi_{1}^{*} \right) \psi_{2} du$$

$$= \left[\int_{-1}^{1} \psi_{2}^{*} \frac{\partial}{\partial u} \left((1 - u^{2}) \frac{\partial}{\partial u} \psi_{1} \right) du \right]^{*}$$

$$= \left[\int_{0}^{\pi} \psi_{2}^{*} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \psi_{1} \right) d \cos \theta \right]^{*}, \quad (4)$$

where we dropped again some surface terms as $u^2 - 1 = 0$ at $u = \pm 1$. (If you prefer $\sin \theta d\theta$ integral instead of $d\cos\theta$ integral, you will not need to change the variable.) This completes the proof that L^2 is Hermitian.

And that's it!