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We need to show that
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The second part of 𝐿2 operator is easier to handle. The relevant part of the integral is the 𝜙
integral, which can be computed as follows
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where we dropped the first terms in the first two lines as the they are the difference of the
integrand at 𝜙 = 2𝜋 and 𝜙 = 0, and that is zero as 𝜙 coordinate is 2𝜋 periodic.

The first part of 𝐿2 operator seems to be harder because when we integrate by parts 𝜕
𝜕𝜃 will

act on sin 𝜃, which will complicate the problem. However, we can avoid it by a change of
variable 𝑢 = cos 𝜃. The relevant part of the integral is the 𝑑𝑐𝑜𝑠𝜃 integral, and with the above
transformation it becomes,
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where we dropped again some surface terms as 𝑢2 − 1 = 0 at 𝑢 = ±1. (If you prefer sin 𝜃𝑑𝜃
integral instead of 𝑑𝑐𝑜𝑠𝜃 integral, you will not need to change the variable.) This completes
the proof that 𝐿2 is Hermitian.

And that’s it!
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