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This article provides a comprehensive analysis of electromagnetic coil calcula-
tions, from basic principles to advanced mathematical treatments. We begin with
simplified models to build intuition about magnetic fields in solenoids, then progress
to more sophisticated analyses using elliptic integrals. The work covers magnetic
field calculations both on and off axis, vector potential derivations, and practical
considerations like resistance calculations and wire selection. Special attention is
given to the effects of coil geometry, number of turns, and material properties
on the magnetic field distribution and electrical characteristics. The analysis in-
cludes both analytical solutions and practical engineering considerations, making
it valuable for both theoretical understanding and practical applications.

blog: https://tetraquark.vercel.app/posts/coil_calcs/

email: quarktetra@gmail.com

The complexity of calculating the magnetic field and electrical properties of a coil depends
on the desired accuracy[1]. We will start with a simple model to build some intuition on
the problem. We will later consider a more sophisticated model to address the intricacies of
practical devices. Figure 1 illustrates a coil of wire carrying a current.
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Figure 1: An illustration of current carrying solenoid of height 𝐻 and radius 𝑅.
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We will take a deep dive into the physics of coils to compute certain geometrical and electrical
properties based on practical considerations such as packing density and insulation thickness.

Magnetic Field

The calculation of the magnetic field is no simple task. We will start with a back of the
envelope calculation.

A simple model

To get a feel for the overall magnetic field strength, let us start with a simplified case in which
the solenoid is very tall compared to its width, i.e., 𝐻 ≫ 𝑅, and has many turns 𝑁 ≫ 1. We
will first be interested in what is going on inside the coil. In the steady state, we can calculate
the magnetic field using Ampere’s law:

∇ × B = 𝜇0J (1)

or equivalently the integral version of it:

∫ 𝑑S ⋅ ∇ × B = ∮ 𝑑ℓ ⋅ B = 𝜇0 ∫ 𝑑S ⋅ J (2)

The integration surface 𝑑S is bounded by the closed loop 𝑑ℓ as shown in red in Figure 2.
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Figure 2: An illustration of current carrying solenoid of height 𝐻 and radius 𝑅.
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The magnetic field outside the coil will be zero in this approximation (up to 1/𝑁 terms). The
amount of current passing through the surface is given by 𝐼 × Number of turns in the loop =
𝐼 × 𝑁

𝐻 𝑙. Furthermore, the only contribution to the line integral comes from the path inside the
coil which gives 𝑙𝐵𝑧. Therefore we get the following simple expression for the magnetic field
inside the coil:

𝐵𝑧 = 𝜇0𝐼 × 𝑁
𝐻 = 𝜇0𝐼𝑛 (3)

where 𝑛 ≡ 𝑁
𝐻 is the number of turns per unit length. Self inductance of a coil is defined as the

magnetic flux linkage per unit current in the loop :

𝐿𝑐 = Φ
𝐼 = 𝑁 Area 𝐵𝑧

𝐼 = 𝜇0
𝐴𝑁2

𝐻 (4)

Note that if we had some magnetic material inside the coil, the magnetic field would have
been different. If the material is fully inserted, we can simply replace 𝜇0 with 𝜇𝑐, which is the
permeability of the material. In such cases, the magnetic field becomes:

𝐵𝑧 = 𝜇𝑐𝐼 × 𝑁
𝐻 = 𝜇𝑐𝐼𝑛 (5)

A more realistic model

We need a more precise model of the magnetic field created by the solenoid. Let us start
simple and look at the magnetic field of a single circular loop with a current as in Figure 3.

The magnetic field at an arbitrary point r is given by the Biot-Savart law[2]:

B(r) = 𝜇0
4𝜋 ∫

𝑐

𝐼𝑑ℓ′ × (r − r′)
(r − r′)3 , (6)

where we use the primed coordinates for the source points.

We will be mostly interested in the ̂z component of the magnetic field on the 𝑧-axis, and
this will simplify our life immensely: r = 𝑧 ̂z , 𝑑ℓ′ = 𝑑ℓ′ �̂′, and r − r′ = 𝑧ẑ − 𝑅r̂ giving
𝑑ℓ′ × (r̂ − r̂′) = 𝑑ℓ (𝑧r̂ + 𝑅 ̂z). Furthermore |r − r′| =

√
𝑅2 + 𝑧2, and 𝑑ℓ′ = 𝑅𝑑𝜙′. Therefore

the magnetic field on the 𝑧 axis is the following:

B(r) = 𝜇0𝐼
4𝜋 ∫

𝑐

𝑅𝑑𝜙′ (𝑧r̂ + 𝑅 ̂z)
(𝑅2 + 𝑧2)

3
2

= 𝜇0𝐼
4𝜋

��������*0
∫

𝑐

𝑅𝑑𝜙′𝑧r̂
(𝑅2 + 𝑧2)

3
2

+ 𝜇0𝐼𝑅2

4𝜋 ∫
𝑐

𝑑𝜙′ ̂z
(𝑅2 + 𝑧2)

3
2

= 𝜇0𝐼𝑅2

2 (𝑅2 + 𝑧2)
3
2

̂z, (7)
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Figure 3: A single loop of current. We are mostly interested in the field on the 𝑧 axis.

where the component along r̂ drops off due to symmetry as we integrate over 𝜙′. The magnetic
field in Eq. @ref(eq:biotsavartlawz) has its maximum value at 𝑧 = 0, and we can expand it
around 𝑧 = 0 for small 𝑧 to get the following:

B(r) = 𝜇0𝐼
2𝑅 (1 + 𝑧2

𝑅2 )
3
2

̂z ≃ 𝜇0𝐼
2𝑅 (1 − 3

2
𝑧2

𝑅2 ) ̂z, (8)

which shows that it can be modeled as a quadratic function around the origin.

Figure Figure 3 shows a single loop sitting at 𝑧 = 0. If the solenoid has a finite height, let’s call
it 𝐻, it will be many such single loops stacked on top of each other. Let’s label the positions
of these loops as 𝑧′. If we take a small slice of these loops from 𝑧′ to 𝑧′ + 𝑑𝑧′, the current in
this slice will be 𝑑𝐼 = 𝑁𝐼 𝑑𝑧′

𝐻 , which is simply the number turns per length times the length
𝑑𝑧′. Now the magnetic field becomes:
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B(r) = 𝑁𝜇0𝐼
2𝑅𝐻 ∫

𝐻/2

−𝐻/2

𝑑𝑧′

(1 + (𝑧 − 𝑧′)2/𝑅2)
3
2

̂z

= 𝑁𝜇0𝐼
2𝐻 ∫

𝑧−𝐻/2
𝑅

𝑧+𝐻/2
𝑅

𝑑𝑠
(1 + 𝑠2)

3
2

̂z

= 𝑁𝜇0𝐼
2𝐻 ∫

𝜃2

𝜃1

sec2 𝜃𝑑𝜃
(1 + tan2 𝜃)

3
2

̂z

= 𝑁𝜇0𝐼
2𝐻 ( 𝐻/2 − 𝑧

√𝑅2 + (𝐻/2 − 𝑧)2 + 𝐻/2 + 𝑧
√𝑅2 + (𝐻/2 + 𝑧)2 ) ̂z. (9)

Equation 9 accounts for the finite height of the coil, and expanding it around 𝑧 = 0 gives the
quadratic term:

𝑁𝜇0𝐼
2 ( 48𝑅2

(𝐻2 + 4𝑅2)5/2 ) 𝑧2, (10)

which goes like 1/𝐻4 for large 𝐻1 . In other words, the magnetic field becomes pretty flat
inside the solenoid if 𝐻 is large. Tall solenoids won’t apply a strong restoring force close to
the middle point.

It is interesting to note that if one inserts a permanent magnet with moment M close to the
center, it will couple to this magnetic fields as ∝ −M ⋅ B ∝ 𝑧2, which will be simple harmonic
oscillator.

Series expansion

The calculation of the magnetic field off the 𝑧 axis is a bit much more involved.

The complete computation of the magnetic field will result in elliptical integrals[3]. The cor-
responding inductance will also involve elliptical integrals. We will avoid the elliptic integrals
for now by settling for the an approximate solution. We have calculated the magnetic field on
the central axis in Eq. 9, and that can enable us to step off the axis. We can start from the
Ampere’s law, Eq. 1 in the absence of sources:

∇ × B = 0. (11)

Since the curl of B is 0, from the fundamental theorem of vector calculus, we know that B
can be written as the gradient of a magnetic scalar potential:

B = −∇𝜓. (12)
1assuming we keep adding turns to keep 𝑁/𝐻 constant
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Furthermore, since there are no magnetic monopoles, B is also divergence free:

∇ ⋅ B = −∇2𝜓 = 0. (13)

We would like solve the Laplace’s equation in spherical coordinates as illustrated in Figure 4.

Figure 4: The spherical coordinates.

In the spherical coordinates, the Laplace equation reads:

∇2𝜓 = [ 1
𝑟2

𝜕
𝜕𝑟 (𝑟2 𝜕

𝜕𝑟) + 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃) + 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2 ] 𝜓 (14)

We can separate the variables as 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃)Φ(𝜙):

ΘΦ
𝑟2

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) + 𝑅Φ
𝑟2 sin 𝜃

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) + 𝑅Θ
𝑟2 sin2 𝜃

𝜕2Φ
𝜕𝜙2 = 0, (15)

or equivalently

sin2 𝜃
𝑅

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) + sin 𝜃
Θ

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) = − 1
Φ

𝜕2Φ
𝜕𝜙2 . (16)

Since the left-hand side of Eq. 16 depends on 𝑟 and 𝜃 only, and the right one depends on 𝜙
only, overall they can only be equal to a constant, which we will call 𝑚2. This separates out
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the Φ function. Furthermore, since 𝜙 is the angle, the solutions have to be 2𝜋 periodic, which
gives:

Φ(𝜙) = 𝑒𝑖𝑚𝜙. (17)

Putting this back in Eq. 16 and dividing the it by sin2 𝜃 we get:

1
𝑅

𝑑
𝑑𝑟 (𝑟2 𝑑𝑅

𝑑𝑟 ) = − 1
sin 𝜃Θ

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) − 𝑚2

sin2 𝜃
. (18)

Similarly, since the left-hand side of Eq. 18 depends on 𝑟 only, and the right one depends on
𝜃 only, overall they can only be equal to a constant, which we will call 𝑐.

Radial dependence

The form of the solution for 𝑅(𝑟) is easy to guess since the derivatives are balanced by the
powers of 𝑟, and therefore, a function of the form 𝑟𝑙 will preserve its form up to a coefficient.

𝑑
𝑑𝑟 (𝑟2 𝑑𝑟𝑙

𝑑𝑟 ) − 𝑐𝑟𝑙 = [𝑙(𝑙 + 1) − 𝑐] 𝑟𝑙 = 0 ⟹ 𝑐 = 𝑙(𝑙 + 1). (19)

However, notice the unexpected symmetry of 𝑙(𝑙 + 1) under 𝑙 → −𝑙 − 1. This means, if 𝑟𝑙 is a
solution, so is 𝑟−𝑙−1. This suggests the following form of solution for 𝑅:

𝑅(𝑟) = 𝑎𝑙𝑟𝑙 + 𝑏𝑙
𝑟𝑙+1 . (20)

Angular part

Putting this back in Eq. 18 yields

1
sin 𝜃

𝑑
𝑑𝜃 (sin 𝜃𝑑Θ

𝑑𝜃 ) + [𝑙(𝑙 + 1) − 𝑚2

sin2 𝜃
] Θ = 0. (21)

Now define cos 𝜃 = 𝑥, which gives 𝑑
𝑑𝜃 = 𝑑𝑥

𝑑𝜃
𝑑

𝑑𝑥 = − sin 𝜃 𝑑
𝑑𝑥 and insert this back in Eq.21:

(1 − 𝑥2)𝑑2Θ
𝑑𝑥2 − 2𝑥𝑑Θ

𝑑𝑥 + [𝑙(𝑙 + 1) − 𝑚2

1 − 𝑥2 ] Θ = 0. (22)

Let’s first attempt to solve this for 𝑚 = 0 using power series expansion[4]:

Θ(𝑥) =
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘. (23)
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Inserting this back to Eq. 22 we get:

0 =
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘−2𝑘(𝑘 − 1) −
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘𝑘(𝑘 − 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 2𝑘]

=
∞

∑
𝑘=2

𝑐𝑘𝑥𝑘−2𝑘(𝑘 − 1) −
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘𝑘(𝑘 − 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 2𝑘]

=
∞

∑
𝑘=0

𝑐𝑘+2𝑥𝑘(𝑘 + 2)(𝑘 + 1) +
∞

∑
𝑘=0

𝑐𝑘𝑥𝑘 [𝑙(𝑙 + 1) − 𝑘(𝑘 + 1)]

=
∞

∑
𝑘=0

{𝑐𝑘+2(𝑘 + 2)(𝑘 + 1) − 𝑐𝑘 [𝑘(𝑘 + 1) − 𝑙(𝑙 + 1)]} 𝑥𝑘. (24)

This implies

𝑐𝑘+2 = 𝑘(𝑘 + 1) − 𝑙(𝑙 + 1)
(𝑘 + 2)(𝑘 + 1) 𝑐𝑘 = (𝑘 − 𝑙)(𝑙 + 𝑘 + 1)

(𝑘 + 2)(𝑘 + 1) 𝑐𝑘, (25)

which is the recurrence equation for the expansion coefficients.

This is a remarkable equation since it has profound consequences. Earlier in this blog, we
looked at the Quantum Harmonic Oscillator and showed that for a similar series expansion to
converge, we had to have the energy quantized. In this particular problem, until this point,
we have no indication of 𝑙 being an integer. But now, we see that it has to be an integer so
that the series truncates for 𝑘 > 𝑙 (for every other 𝑘). That’s the first observation.

The second observation is associated with the parity symmetry of the original differential Eq.
22, which is invariant under 𝑥 → −𝑥 upto the overall sign. This shows that the solutions will
also be eigenstates of the parity operator, i.e., odd and even 𝑘 terms should not mix.

We have a couple of ways of terminating the series. The first one is what we have discussed
above, i.e., settin 𝑙 to an integer 𝑘∗, which will zero out every other 𝑐𝑘. The 𝑐𝑘’s, with 𝑘 > 𝑙,
not addressed by this truncation need to be eliminated directly by their root coefficient, 𝑐0 or
𝑐1. To be more specific, take an example 𝑙 = 1. The 𝑐𝑘’s with odd 𝑘 quickly terminate after
𝑘 = 1: 𝑐1, 0, ⋯. The even ones will keep growing: 𝑐0, 𝛼𝑐0, 𝛽𝛼𝑐0, ⋯. The only way to tame this
series is by killing it at its root, i.e., by setting it 𝑎0 = 0 so that all the even terms drop out.
This shows that even odd powers of 𝑥 will not mix preserving respecting the parity symmetry
of the original equation.
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From Eq. 25, we can explicitly write the fist few Legendre polynomials:

𝑃0(𝑥) = 1,
𝑃1(𝑥) = 𝑥,
𝑃2(𝑥) = 1

2(3𝑥2 − 1),

𝑃3(𝑥) = 1
2(5𝑥3 − 3𝑥),

𝑃4(𝑥) = 1
8(35𝑥4 − 30𝑥2 + 3). (26)

Having shown that Legendre polynomials solve the differential equation (with 𝑚 = 0),

(1 − 𝑥2)𝑑2𝑃𝑙
𝑑𝑥2 − 2𝑥𝑑𝑃𝑙

𝑑𝑥 + 𝑙(𝑙 + 1)𝑃𝑙 = 0. (27)

We now need to address the full equation with 𝑚 ≠ 0. The idea would be to differentiate 𝑚
times to create the 𝑚2 term. For this, we will need the Leibniz’s formula:

𝑑𝑚

𝑑𝑥𝑚 [𝑓(𝑥)𝑔(𝑥)] =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑑𝑘𝑓

𝑑𝑥𝑘
𝑑𝑛−𝑘𝑔
𝑑𝑥𝑛−𝑘 (28)

Let’s dive into the differentiation:

0 = 𝑑𝑚

𝑑𝑥𝑚 [(1 − 𝑥2)𝑑2𝑃𝑙
𝑑𝑥2 − 2𝑥𝑑𝑃𝑙

𝑑𝑥 + 𝑙(𝑙 + 1)𝑃𝑙]

= (1 − 𝑥2) 𝑑𝑚

𝑑𝑥𝑚
𝑑2𝑃𝑙
𝑑𝑥2 + 𝑚 𝑑

𝑑𝑥(1 − 𝑥2) 𝑑𝑚−1

𝑑𝑥𝑚−1
𝑑2𝑃𝑙
𝑑𝑥2 + 𝑚(𝑚 − 1)

2
𝑑2

𝑑𝑥2 (1 − 𝑥2) 𝑑𝑚−2

𝑑𝑥𝑚−2
𝑑2𝑃𝑙
𝑑𝑥2

−2𝑥 𝑑𝑚

𝑑𝑥𝑚
𝑑𝑃𝑙
𝑑𝑥 − 2𝑚 𝑑

𝑑𝑥(𝑥) 𝑑𝑚−1

𝑑𝑥𝑚−1
𝑑𝑃𝑙
𝑑𝑥 + 𝑙(𝑙 + 1) 𝑑𝑚

𝑑𝑥𝑚 𝑃𝑙

= (1 − 𝑥2)𝑢″ − 2𝑚𝑥𝑢′ − 𝑚(𝑚 − 1)𝑢 − 2𝑥𝑢′ − 2𝑚𝑢 + 𝑙(𝑙 + 1)𝑢
= (1 − 𝑥2)𝑢″ − 2(𝑚 + 1)𝑥𝑢′ − 𝑚(𝑚 + 1)𝑢 + 𝑙(𝑙 + 1)𝑢
= (1 − 𝑥2)𝑢″ − 2(𝑚 + 1)𝑥𝑢′ − (𝑙 − 𝑚)(𝑙 + 𝑚 + 1)𝑢, (29)

where 𝑢 ≡ 𝑑𝑚𝑃𝑙
𝑑𝑥𝑚 . We still need to modify the equation further so that it matches Eq.22. First

of all, we note that the equation we want to get at was self-adjoint, and we kind of destroyed
it as we acted with 𝑑𝑚

𝑑𝑥𝑚 . Let’s restore it and see where it takes us.

Sturm–Liouville theory

We are going to use some machinery from Sturm–Liouville theory on second order differential
equations. Consider the second order differential operator ℒ[4]:
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ℒ𝑢 = (𝑝0(𝑥) 𝑑2

𝑑𝑥2 + 𝑝1(𝑥) 𝑑
𝑑𝑥 + 𝑝2(𝑥)) 𝑢. (30)

We are going to define the inner product in the function space as an integral in a range [𝑎, 𝑏].

⟨𝑢|ℒ|𝑢⟩ ≡ ∫
𝑏

𝑎
𝑑𝑥𝑢(𝑥)ℒ𝑢(𝑥) = ∫

𝑏

𝑎
𝑑𝑥𝑢(𝑥) (𝑝0

𝑑2

𝑑𝑥2 + 𝑝1
𝑑

𝑑𝑥 + 𝑝2) 𝑢

= ∫
𝑏

𝑎
𝑑𝑥 (𝑝0𝑢𝑢″ + 𝑝1𝑢𝑢′ + 𝑢2𝑝2) . (31)

We can integrate Eq.31 by parts. Let’s look at each term one by one:

𝑢𝑝0𝑢″ = 𝑢 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑢𝑝′

0𝑢) + 2𝑢𝑝′
0𝑢′

𝑢𝑝1𝑢′ = −𝑢 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑑

𝑑𝑥(𝑢𝑝1𝑢). (32)

Putting this back in Eq.31 gives:

⟨𝑢|ℒ|𝑢⟩ = [𝑢(𝑝1 − 𝑝′
0)𝑢]𝑏𝑎 + ∫

𝑏

𝑎
𝑑𝑥𝑢 ( 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑝2𝑢)

= [𝑢(𝑝1 − 𝑝′
0)𝑢]𝑏𝑎 + ∫

𝑏

𝑎
𝑑𝑥𝑢 ̄ℒ𝑢, (33)

where the adjoint operator ̄ℒ is defined as:

̄ℒ𝑢 = 𝑑2

𝑑𝑥2 (𝑝0𝑢) − 𝑑
𝑑𝑥(𝑝1𝑢) + 𝑝2𝑢. (34)

Although ̄ℒ𝑢 looks pretty different from ℒ𝑢 in Eq. 30, they can actually be the same if 𝑝1 = 𝑝′
0.

Such ℒ operators are self-adjoint. Furthermore, note that the boundary term also drops out
for self-adjoint operators.

The good news is that if an equation is not self adjoint, it can be converted into that form if
it gets multiplied by the following factor:

1
𝑝0(𝑥)exp {∫

𝑥
𝑑𝑡𝑝1(𝑡)

𝑝0(𝑡)} . (35)

Let’s revisit Eq. 29 to find the factor that will make the equation self-adjoint:

1
1 − 𝑥2 exp {− ∫

𝑥
𝑑𝑡2(𝑚 + 1)𝑡

1 − 𝑡2 } = 1
1 − 𝑥2 exp {(𝑚 + 1) ∫

𝑥 𝑑(1 − 𝑡2)
1 − 𝑡2 } = (1 − 𝑥2)𝑚. (36)
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We will take this factor, multiply Eq. 29 with it to get:

𝑑
𝑑𝑥 ((1 − 𝑥2)𝑚+1𝑢′) − (𝑙 − 𝑚)(𝑙 + 𝑚 + 1)𝑢 = 0. (37)

Finally, we will want to absord half power of that coefficient into 𝑢 by defining

𝑣(𝑥) = (1 − 𝑥2) 𝑚
2 𝑢(𝑥) ⟺ 𝑢(𝑥) = (1 − 𝑥2)− 𝑚

2 𝑣(𝑥), (38)

to get

𝑢′ = [𝑣′ + 𝑚𝑣𝑥
1 − 𝑥2 ] (1 − 𝑥2)− 𝑚

2 ,

𝑢″ = [𝑣″ + 2𝑚𝑣′𝑥
1 − 𝑥2 + 𝑚𝑥

1 − 𝑥2 + 𝑚(𝑚 + 2)𝑥2𝑣
(1 − 𝑥2)2 ] (1 − 𝑥2)− 𝑚

2 . (39)

The new function 𝑣 satisfies the following equation:

(1 − 𝑥2) 𝑑2𝑣
𝑑𝑥2 − 2𝑥 𝑑𝑣

𝑑𝑥 + (𝑙(𝑙 + 1) − 𝑚2

1 − 𝑥2 ) 𝑣 = 0, (40)

which is identical to Eq. 22. In conclusion, the angular part of the solution is given by the
associated Legendre polynomials as below:

𝑃 𝑚
𝑙 (𝑥) = (1 − 𝑥2) 𝑚

2
𝑑𝑚

𝑑𝑥𝑚 𝑃𝑙(𝑥). (41)

Full solution

Note that the highest power in 𝑃𝑙 is 𝑙, and for 𝑚 > 𝑙, we run out of 𝑥’s to differentiate. This
automatically limits |𝑚| to 𝑙. Putting all pieces together, the full solution to the Laplace
equation reads:

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃)Φ(𝜙) =
∞

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
(𝑎𝑙𝑚𝑟𝑙 + 𝑏𝑙𝑚

𝑟𝑙+1 ) 𝑃 𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜙. (42)

In the case of symmetric coils, only 𝑚 = 0 will contribute. Furthermore, for the solution inside
the coil, we need to set 𝑏𝑙 = 0 so that the solution stays finite:

𝜓(𝑟, 𝜃, 𝜙) =
∞

∑
𝑙=0

𝑎𝑙𝑟𝑙𝑃𝑙(cos 𝜃). (43)
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The magneto-static potential becomes a sum of Legendre polynomials[5]:

𝜓(𝑟, 𝜃) = 𝑎0 + 𝑎1𝑟𝑃1(cos 𝜃) + 𝑎2𝑟2𝑃2(cos 𝜃) + 𝑎3𝑟3𝑃3(cos 𝜃) + … . (44)

We can evaluate Eq. @ef{eq:polysum} on the 𝑧−axis, i.e., cos 𝜃 = 1 and 𝑟 = 𝑧, to get:

𝜓(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + ⋯ , (45)

which should be a familiar form since it is also the Taylor expansion. The trick here is to
calculate the coefficients by matching the corresponding magnetic field with the expression we
calculated earlier in Eq. 9. We first need to calculate the vector potential from Eq. 9:

𝜓(𝑧) = − ∫
𝑧

𝑑 ̃𝑧𝐵( ̃𝑧) = − ∫
𝑧

𝑑 ̃𝑧𝑁𝜇0𝐼
2𝐻 ( 𝐻/2 − ̃𝑧

√𝑅2 + (𝐻/2 − ̃𝑧)2 + 𝐻/2 + ̃𝑧
√𝑅2 + (𝐻/2 + ̃𝑧)2 )

= −𝑁𝜇0𝐼
2𝐻 (√𝑅2 + (𝐻/2 + ̃𝑧)2 − √𝑅2 + (𝐻/2 − ̃𝑧)2)

= − 𝑁𝜇0𝐼√
4𝑅2 + 𝐻2 𝑧 + 8𝑁𝑅2𝜇0𝐼

(4𝑅2 + 𝐻2)5/2 𝑧3 + ⋯ . (46)

Comparing the expansion above with Eq. 45 we can read 𝑎0 = 0, 𝑎1 = − 𝑁𝜇0𝐼√
4𝑅2+𝐻2 , 𝑎2 = 0,

and 𝑎3 = 8𝑁𝑅2𝜇0𝐼
(4𝑅2+𝐻2)5/2 . Putting these back into Eq. 44 along with the Legendre polynomials

from Eq. 26, we get 2:

𝜓(𝑟, 𝜃) ≃ − 𝑁𝜇0𝐼√
4𝑅2 + 𝐻2 cos 𝜃 𝑟 + 4𝑁𝑅2𝜇0𝐼

(4𝑅2 + 𝐻2)5/2 (5 cos3 𝜃 − 3 cos 𝜃) 𝑟3. (47)

Now we can use Eq.12 to compute the components of the magnetic field:

𝐵𝑟 = −𝜕𝜓(𝑟, 𝜃)
𝜕𝑟 ≃ 𝑁𝜇0𝐼√

4𝑅2 + 𝐻2 cos 𝜃 − 12𝑁𝑅2𝜇0𝐼
(4𝑅2 + 𝐻2)5/2 (5 cos3 𝜃 − 3 cos 𝜃) 𝑟2,

𝐵𝜃 = −1
𝑟

𝜕𝜓(𝑟, 𝜃)
𝜕𝜃 ≃ − 𝑁𝜇0𝐼√

4𝑅2 + 𝐻2 sin 𝜃 − 12𝑁𝑅2𝜇0𝐼
(4𝑅2 + 𝐻2)5/2 (sin 𝜃 − 5 cos2 𝜃 sin 𝜃) 𝑟2. (48)

If we wanted to switch to cylindrical coordinates we can do that by rotating the vector:

(𝐵𝑧
𝐵𝜌

) = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] (𝐵𝑟

𝐵𝜃
) . (49)

2My results differ from those of the ones in [5]- I believe they have an error in their Equation 10
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Elliptic Integrals

We will now derive the expression for the magnetic field created by a thin solenoid. While we
are here, it will be instructive to solve this problem so that we first get the magnetic field for
a compact coil. We can then integrate to get the result for the solenoid. The magnetic field
at an arbitrary point r is given by the Biot-Savart law integrated over sources:

B(r) = 𝜇0𝐼
4𝜋𝐻 ∫

𝑐

𝑑ℓ′ × (r − r′)
(r − r′)3 . (50)

Equivalently, we can first compute the vector potential and then take its curl. In a generic
representation, the vector potential is expressed as follows[1]:

A(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′| , (51)

where J is the current density.

Single loop

Let’s take a closer look at the field at a generic point r created by a single loop, as illustrated
Figure 5.

R

r−
r ′

r′

r

dℓ′

dB

I

ϕ′

Figure 5: A single loop of current. We are now interested in the field at a generic point r
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For a single loop sitting at 𝑧 = 0 with radius 𝑟 = 𝑅, it is convenient to work in spherical
coordinates.

J𝑠(r′) = 𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) ̂�′ = 𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜑′ ̂j − sin 𝜑′ ̂i) , (52)

where 𝜆 is the current density. In order to calculate 𝜆 for a loop of wire carrying a current 𝐼 ,
let’s intercept the loop with an area perpendicular to it. We can do that by selecting an area
on, say, positive 𝑥 axis ( i.e., 𝜑′ = 0), pointing along the 𝑦 axis, i.e., 𝑑S′ = 𝑑𝑆′ ̂j = 𝑟′𝑑𝑟′𝑑𝜃′ ̂j.
Integrating the current density on this area we should get the total current:

∫
𝑆

𝑑S′ ⋅ J(r) = ∫
𝑆

𝑟′𝑑𝑟′𝑑𝜃′𝜆𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) ̂j ⋅ (cos 𝜑′ ̂j − sin 𝜑′ ̂i) ∣
𝜑′=0

= 𝑅𝜆 = 𝐼

⟹ 𝜆 = 𝐼/𝑅. (53)

Therefore, the properly normalized current is

J𝑠(r′) = 𝐼
𝑅𝛿(𝑟′ − 𝑅)𝛿(𝑧′ − 𝑧𝑠) ̂�′ = 𝐼

𝑅𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜑′ ̂j − sin 𝜑′ ̂i) . (54)

Before we continue the calculation for a generic observation point r, let me throw you a curve-
ball. Consider the vector potential on the 𝑧 axis, i.e., r = z. In this case, |r − r′| across
the integration as can be seen from Figure 6. Therefore the integration in Eq. 51 becomes:
∝ ∫2𝜋

0 𝑑𝜑 ̂�′ = 0. So the vector potential vanishes on the 𝑧 axis. Since B = ∇×A, the magnetic
field should vanish too! But, we calculated the magnetic field on the 𝑧 axis in Eq. 8 and it
is clearly non-zero. What went wrong? Here is the problem: if you are cooking a function to
take the derivative later, that function has to be defined in the vicinity of the points you will
take derivatives. More specifically, you can’t compute A on only the 𝑧 axis and expect to be
able to take its curl since curl will by definition take its derivative stepping off of the 𝑧 axis.

The integral we have to deal with for a single loop is this:

A𝑠(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′| = 𝜇0𝐼
4𝜋𝑅 ∫ 𝑑3r′ 𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜑′ ̂j − sin 𝜑′ ̂i)

|r − r′| , (55)

where we put the subscript 𝑠 to remind us that this is for a single loop. We will parameterize
the points on the loop centered at 𝑧 = 0 as r′ = 𝑟′(cos 𝜑′ ̂i + sin 𝜑′ ̂j), and the observation point
as r = 𝑟 cos 𝜃 ̂z + 𝑟 sin 𝜃(cos 𝜑 ̂i + sin 𝜑 ̂j)

|r − r′| = √𝑟2 cos2 𝜃 + (𝑟 sin 𝜃 cos 𝜑 − 𝑟′ cos 𝜑′)2 + (𝑟 sin 𝜃 sin 𝜑 − 𝑟′ sin 𝜑′)2

= √𝑟2 + 𝑟′2 − 2𝑟𝑟′ sin 𝜃 cos(𝜑′ − 𝜑). (56)

Note that the problem has rotational symmetry. We can rotate our coordinate system such
that the observation point sits on 𝑦 = 0, i.e., 𝜑 = 0. Once we are done with the computations,
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we can rotate the vectors back to general r point. So let’s set 𝜑 = 0 in Eq. 56 and rewrite Eq.
55 :

A𝑠(r) = 𝜇0𝐼
4𝜋𝑅 ∫ sin 𝜃′𝑟′2𝑑𝑟′𝑑𝜑′ 𝛿(𝑟′ − 𝑅)𝛿(cos 𝜃′) (cos 𝜑′ ̂j − sin 𝜑′ ̂i)

√𝑟2 + 𝑟′2 − 2𝑟𝑟′ sin 𝜃 cos(𝜑′ − 𝜑)

= 𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜑′ cos 𝜑′ ̂j

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos(𝜑′ − 𝜑)

−

������������������������:0

𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜑′ sin 𝜑′ ̂i

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos(𝜑′ − 𝜑)
, (57)

where the second term vanishes since the integrand is odd and the integral is evaluated over
the full range. Note that we evaluated the integral at 𝜑 = 0, and the resulting potential points
in ̂j direction. For generic 𝜑 we can simply rotate the coordinate system about the 𝑧 axis by
𝜑. In this rotated coordinate system ̂j → ̂�. Therefore the vector potential reads:

A𝑠(r) = ̂�𝜇0𝐼𝑅
4𝜋 ∫

2𝜋

0
𝑑𝜑′ cos 𝜑′

√𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃 cos 𝜑′ . (58)

Let’s define 𝜙′ = 𝜋 − 𝜑′ to get cos 𝜑′ = − cos 𝜙′ and rewrite Eq. 58 as:

A𝑠(r) = − ̂�𝜇0𝐼𝑅
4𝜋 ∫

𝜋

−𝜋
𝑑𝜙′ cos 𝜙′

√𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃 cos 𝜙′ . (59)

Let’s also use the half angle formula: cos 𝜙′ = 1 − 2 sin2 𝜙′

2 and reorganize the integral:
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A𝑠(r) = − ̂�𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ 1 − 2 sin2 𝜙′

2
√1 − 4𝑟𝑅 sin 𝜃

𝑟2+𝑅2+2𝑟𝑅 sin 𝜃 sin2 𝜙′
2

≡ − ̂�𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ 1 − 2 sin2 𝜙′

2
√1 − 𝑘2 sin2 𝜙′

2

= − ̂�𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ ⎡⎢

⎣

1
√1 − 𝑘2 sin2 𝜙′

2

− 2 sin2 𝜙′

2
√1 − 𝑘2 sin2 𝜙′

2

⎤⎥
⎦

= − ̂�𝜇0𝐼𝑅
4𝜋

1√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

∫
𝜋

−𝜋
𝑑𝜙′ ⎡⎢

⎣

1
√1 − 𝑘2 sin2 𝜙′

2

− 2
𝑘2

⎛⎜⎜
⎝

1
√1 − 𝑘2 sin2 𝜙′

2

− √1 − 𝑘2 sin2 𝜙′

2
⎞⎟⎟
⎠

⎤⎥
⎦

= − ̂�𝜇0𝐼𝑅
4𝜋

1
𝑘2√

𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃
∫

𝜋

−𝜋
𝑑𝜙′ ⎡⎢

⎣

𝑘2 − 2
√1 − 𝑘2 sin2 𝜙′

2

+ 2√1 − 𝑘2 sin2 𝜙′

2
⎤⎥
⎦

(60)

where 𝑘2 = 4𝑟𝑅 sin 𝜃
𝑟2+𝑅2+2𝑟𝑅 sin 𝜃 . Finally, we define 𝜁′ = 𝜙′/2 and split the integration into two

pieces to pick an overall factor of 4 to get:

A𝑠(r) = ̂� 𝜇0𝐼𝑅
𝜋

√
𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃

(2 − 𝑘2)𝐾(𝑘2) − 2𝐸(𝑘2)
𝑘2 , (61)

where the elliptic integral are defined as follows:

𝐾(𝑘2) = ∫
𝜋
2

0

𝑑𝜃
√1 − 𝑘2 sin2 𝜃

,

𝐸(𝑘2) = ∫
𝜋
2

0
𝑑𝜃√1 − 𝑘2 sin2 𝜃. (62)

The calculation of the magnetic field is straightforward[6]:

𝐵𝑟 = 1
𝑟 sin 𝜃

𝜕
𝜕𝜃(sin 𝜃𝐴𝜑) = 𝜇0𝐼𝑅2

𝜋
√

𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃(𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃)
cos 𝜃𝐸(𝑘2),

𝐵𝜃 = −1
𝑟

𝜕
𝜕𝑟(𝑟𝐴𝜑) = 𝜇0𝐼 [(𝑟2 + 𝑅2 cos(2𝜃))𝐸(𝑘2) − (𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃)𝐾(𝑘2)]

2𝜋
√

𝑟2 + 𝑅2 + 2𝑟𝑅 sin 𝜃(𝑟2 + 𝑅2 − 2𝑟𝑅 sin 𝜃) sin 𝜃
. (63)
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We can also express the magnetic field in the cylindrical coordinates [6]:

𝐵𝜌 = 𝜇0𝐼𝑧 [(𝑅2 + 𝜌2 + 𝑧2)𝐸(𝑘2) − (𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌))𝐾(𝑘2)]
2𝜋√𝑅2 + 𝜌2 + 𝑧2 + 2𝑅𝜌(𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌)𝜌

,

𝐵𝑧 = 𝜇0𝐼 [(𝑅2 − 𝜌2 − 𝑧2)𝐸(𝑘2) + (𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌))𝐾(𝑘2)]
2𝜋√𝑅2 + 𝜌2 + 𝑧2 + 2𝑅𝜌(𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌)𝜌

. (64)

Solenoid

Now we need to stack up many single loops and integrate the fields[7]. We choose the cylindrical
coordinate system and highlight one of these loops centered at 𝑧𝑠 in Figure 6.

Figure 6: A loop sitting at 𝑧 = 𝑧𝑠. We will integrate over these loops along the 𝑧 direction
from −𝐿/2 to 𝐿/2.

For the solenoid of 𝐻 centered at 𝑧 = 0, the current on the wires at r′ = 𝑅 and −𝐻
2 < 𝑧 < 𝐻

2 ,
we can express it as follows:

J𝑠(r′) = 𝜆𝛿(𝑟′ − 𝑅) ̂�′ = 𝜆𝛿(𝑟′ − 𝑅) (cos 𝜑′ ̂j − sin 𝜑′ ̂i) , for − 𝐻
2 < 𝑧 < 𝐻

2 , (65)
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where 𝜆 is the current density. In order to calculate 𝜆 for a loop of wire carrying a current 𝐼 ,
let’s intercept the loop with an area perpendicular to it. The surface is a thin rectangle just
around r′ = 𝑅 and −𝐻

2 < 𝑧 < 𝐻
2 . We can still select an area on positive 𝑥 axis ( i.e., 𝜑′ = 0),

pointing along the 𝑦 axis, i.e., 𝑑S′ = 𝑑𝑆′ ̂j = 𝑑𝑟′𝐻 ̂j. Integrating the current density on this
area we should get the total current:

∫
𝑆

𝑑S′ ⋅ J(r) = ∫
𝑆

𝑑𝑟′𝐻𝜆𝛿(𝑟′ − 𝑅) ̂j ⋅ (cos 𝜑′ ̂j − sin 𝜑′ ̂i) ∣
𝜑′=0

= 𝜆𝐻 = 𝑁𝐼

⟹ 𝜆 = 𝑁𝐼
𝐻 , (66)

where 𝑁 is the total number of turns in the coil. Therefore, the properly normalized current
is

J𝑠(r′) = 𝑁𝐼
𝐻 𝛿(𝑟′ − 𝑅) ̂�′ = 𝑛𝐼𝛿(𝑟′ − 𝑅) (cos 𝜑′ ̂j − sin 𝜑′ ̂i) , (67)

where 𝑛 = 𝑁
𝐻 is the number of turns per unit length. The integral we have to deal with for

the coils reads:

A(r) = 𝜇0
4𝜋 ∫ 𝑑3r′ J(r′)

|r − r′| = 𝜇0𝑛𝐼
4𝜋 ∫

𝐻
2

− 𝐻
2

𝑑𝑧′𝑟′𝑑𝑟′𝑑𝜑′ 1
|r − r′| 𝛿(𝑟′ − 𝑅) (cos 𝜑′ ̂j − sin 𝜑′ ̂i) ,(68)

where we put the subscript 𝑠 to remind us that this is for a single loop. We will parameterize
the points on the loop centered at 𝑧 = 𝑧′ as r′ = 𝑧′ k+𝑟′(cos 𝜑′ ̂i+sin 𝜑′ ̂j), and the observation
point as r = z + 𝑟(cos 𝜑 ̂i + sin 𝜑 ̂j)

|r − r′| = |z + 𝑟(cos 𝜑 ̂i + sin 𝜑 ̂j) − 𝑧′ k − 𝑟′(cos 𝜑′ ̂i + sin 𝜑′ ̂j)|
= √(𝑧 − 𝑧′)2 + 𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos(𝜑 − 𝜑′). (69)

Note that the problem has rotational symmetry. We can rotate our coordinate system such
that the observation point sits on 𝑦 = 0, i.e., 𝜑 = 0. Once we are done with the computations,
we can rotate the vectors back to general r point. So let’s set 𝜑 = 0 in Eq. 56 and rewrite Eq.
55 :

A(r) = 𝜇0𝑛
4𝜋 ∫ 𝑟′𝑑𝑟′𝑑𝑧′𝑑𝜑′ 1

√(𝑧 − 𝑧′)2 + 𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos 𝜑′ 𝛿(𝑟′ − 𝑅) (cos 𝜑′ ̂j − sin 𝜑′ ̂i)

= 𝜇0𝑛𝑅
4𝜋 ∫

𝐻
2

− 𝐻
2

𝑑𝑧′ ∫
2𝜋

0
𝑑𝜑′ cos 𝜑′ ̂j

√(𝑧 − 𝑧′)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′

−𝜇0𝑛𝑅
4𝜋 ∫

𝐻
2

− 𝐻
2

𝑑𝑧′

����������������������:0

∫
2𝜋

0
𝑑𝜑′ sin 𝜑′ ̂i

√(𝑧 − 𝑧′)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ , (70)
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where the second term vanishes since the integrand is odd and the integral is evaluated over
the full range. Note that we evaluated the integral at 𝜑 = 0, and the resulting potential points
in ̂j direction. For generic 𝜑 we can simply rotate the coordinate system about the 𝑧 axis by
𝜑. In this rotated coordinate system ̂j → ̂�. Therefore the vector potential reads:

A(r) = ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ ∫

𝐻
2

− 𝐻
2

𝑑𝑧′ cos 𝜑′

√(𝑧′ − 𝑧)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ , . (71)

where the integrand periodic and the range can be set to [0, 𝜋] by inserting an overall factor
of 2. We will want to do the the 𝑧′ integral first by changing the variable as 𝑧′ − 𝑧 ≡
√𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ tan 𝛼:

ℐ = ∫ 𝑑𝑧′ 1
√(𝑧′ − 𝑧)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ = ∫ 𝑑𝛼 √𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ sec2 𝛼

√𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′√tan2 𝜃 + 1

= ∫ 𝑑𝛼 sec 𝛼 = ∫ 𝑑𝛼 sec 𝛼sec 𝛼 + tan 𝛼
sec 𝛼 + tan 𝛼 = ∫ 𝑑𝛼sec2 𝛼 + tan 𝛼 sec 𝛼

sec 𝛼 + tan 𝛼 = ∫ 𝑑(sec 𝛼 + sec 𝛼)
sec 𝛼 + tan 𝛼

= ln | sec 𝛼 + tan 𝛼| = ln ∣𝑧
′ − 𝑧 + √(𝑧′ − 𝑧)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′

√𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ ∣

= ln ∣𝑧′ − 𝑧 + √(𝑧′ − 𝑧)2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣ − ln ∣√𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣ (72)

where we can drop the last term since it has no 𝑧 dependence and its values at the upper
and lower boundary is the same. Let’s define 𝑧′ − 𝑧 = 𝜉, 𝜉± = 𝑧 ± 𝐻

2 and go back to the 𝜑′

integral:

A(r) = ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ cos 𝜑′ ln ∣𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣

𝜉+

𝜉−

= ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0
𝑑 {sin 𝜑′ ln ∣𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣

𝜉+

𝜉−
}

− ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ sin 𝜑′ 𝑑

𝑑𝜑′ {ln ∣𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣
𝜉+

𝜉−
}

= ̂�𝜇0𝑛𝑅
2𝜋

������������������������:0

{sin 𝜑′ ln ∣𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′∣
𝜉+

𝜉−
}∣

𝜋

0

− ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0

𝑑𝜑′𝑟𝑅 sin2 𝜑′

(𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′
∣
𝜉+

𝜉−

= − ̂�𝜇0𝑛𝑅
2𝜋 ∫

𝜋

0

𝑑𝜑′𝑟𝑅 sin2 𝜑′

(𝜉 + √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′
∣
𝜉+

𝜉−

(73)
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Multiply and divide by √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ − 𝜉 [7] to get:

A(r) = − ̂�𝜇0𝑛𝐼𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ (√𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ − 𝜉)𝑟𝑅 sin2 𝜑′

(𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ − 𝜉2) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ ∣
𝜉+

𝜉−

= − ̂�𝜇0𝑛𝐼𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ (√𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ − 𝜉)𝑟𝑅 sin2 𝜑′

(𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ ∣
𝜉+

𝜉−

= − ̂�𝜇0𝑛𝐼𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ ⎡⎢⎢

⎣�
������������:0

𝑟𝑅 sin2 𝜑′

(𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) ∣
𝜉+

𝜉−

⎤⎥⎥
⎦

+ ̂�𝜇0𝑛𝐼𝑅
2𝜋 ∫

𝜋

0
𝑑𝜑′ ⎡⎢

⎣
𝜉𝑟𝑅 sin2 𝜑′

(𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ ∣
𝜉+

𝜉−

⎤⎥
⎦

= ̂�𝜇0𝑛𝐼𝑅2𝑟
2𝜋 ∫

𝜋

0
𝑑𝜑′ 𝜉 sin2 𝜑′

(𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′) √𝜉2 + 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜑′ ∣
𝜉+

𝜉−

, (74)

where the first term vanishes since it has no 𝜉 dependence. As we did in the Single loop section,
Let’s define 𝜙′ = 𝜋 −𝜑′ to get cos 𝜑′ = − cos 𝜙′. This will change the integral limits from [0, 𝜋]
to [𝜋, 0] and the measure from 𝑑𝜑 to −𝑑𝜙. We can flip the integral limits with the negative
sign of the measure to get:

A(r) = ̂�𝜇0𝑛𝐼𝑅2𝑟
2𝜋 ∫

𝜋

0
𝑑𝜙′ 𝜉 sin2 𝜙′

(𝑟2 + 𝑅2 + 2𝑟𝑅 cos 𝜙′) √𝜉2 + 𝑟2 + 𝑅2 + 2𝑟𝑅 cos 𝜙′ ∣
𝜉+

𝜉−

. (75)

we define 𝜁′ = 𝜙′

2 . Noting

sin2 𝜙′ = sin2(2𝜁′) = [2 sin 𝜁′ cos 𝜁′]2 = 4 sin2 𝜁′ cos2 𝜁′ = 4 sin2 𝜁′ − 4 sin4 𝜁′, (76)
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we get:

A(r) = ̂�𝜇0𝑛𝐼𝑅2𝑟
𝜋 ∫

𝜋/2

0
𝑑𝜁′ 4 sin2 𝜁′ − 4 sin4 𝜁′

(𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)) √𝜉2 + 𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)
𝜉∣

𝜉+

𝜉−

= ̂�4𝜇0𝑛𝐼𝑅2𝑟
𝜋 ∫

𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

(𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)) √𝜉2 + 𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)
𝜉∣

𝜉+

𝜉−

= ̂�4𝜇0𝑛𝐼𝑅2𝑟
𝜋 ∫

𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

(𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)) √𝜉2 + 𝑟2 + 𝑅2 + 2𝑟𝑅 cos(2𝜁′)
𝜉∣

𝜉+

𝜉−

= ̂�4𝜇0𝑛𝐼𝑅2𝑟
𝜋 ∫

𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

((𝑟 + 𝑅)2 − 4𝑟𝑅 sin2 𝜁′) √𝜉2 + (𝑟 + 𝑅)2 − 4𝑟𝑅 sin2 𝜁′
𝜉∣

𝜉+

𝜉−

= ̂� 4𝜇0𝑛𝐼𝑅2𝑟
𝜋(𝑟 + 𝑅)2√𝜉2 + (𝑟 + 𝑅)2 ∫

𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

(1 − 4𝑟𝑅
(𝑟+𝑅)2 sin2 𝜁′) √1 − 4𝑟𝑅

𝜉2+(𝑟+𝑅)2 sin2 𝜁′
𝜉∣

𝜉+

𝜉−

= ̂� 4𝜇0𝑛𝐼𝑅2𝑟
𝜋(𝑟 + 𝑅)2√𝜉2 + (𝑟 + 𝑅)2 ∫

𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

(1 − ℎ2 sin2 𝜁′) √1 − 𝑘2 sin2 𝜁′
𝜉∣

𝜉+

𝜉−

. (77)

where ℎ2 ≡ 4𝑟𝑅
(𝑟+𝑅)2 and 𝑘2 ≡ 4𝑟𝑅

𝜉2+(𝑟+𝑅)2 .

We can do partial fractions:

ℐ = ∫
𝜋/2

0
𝑑𝜁′ sin2 𝜁′ − sin4 𝜁′

(1 − ℎ2 sin2 𝜁′) √1 − 𝑘2 sin2 𝜁′

= ∫
𝜋/2

0
𝑑𝜁′

⎧{
⎨{⎩

1
ℎ2

⎡⎢
⎣

1
(1 − ℎ2 sin2 𝜁′)√1 − 𝑘2 sin2 𝜁′

− 1
√1 − 𝑘2 sin2 𝜁′

⎤⎥
⎦

+ 1
ℎ4

⎡⎢
⎣

1 + ℎ2 sin2 𝜁′

√1 − 𝑘2 sin2 𝜁′
− 1

(1 − ℎ2 sin2 𝜁′)√1 − 𝑘2 sin2 𝜁′

⎤⎥
⎦

⎫}
⎬}⎭

= 𝑘2 + ℎ2 − ℎ2𝑘2

ℎ2𝑘2 𝐾(𝑘2) − 1
𝑘2 𝐸(𝑘2) − ℎ2 − 1

ℎ2 Π(ℎ2, 𝑘2), (78)
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where

𝐾(𝑘2) = ∫
𝜋
2

0

𝑑𝜃
√1 − 𝑘2 sin2 𝜃

,

𝐸(𝑘2) = ∫
𝜋
2

0
𝑑𝜃√1 − 𝑘2 sin2 𝜃,

Π(ℎ2, 𝑘2) = ∫
𝜋
2

0

𝑑𝜃
(1 − ℎ2 sin2 𝜃)√1 − 𝑘2 sin2 𝜃

. (79)

Putting it all together, we get:

A(r) = ̂�𝜇0𝑛𝐼
√

𝑅
2𝜋√𝑟 [𝑘2 + ℎ2 − ℎ2𝑘2

ℎ2𝑘2 𝐾(𝑘2) − 1
𝑘2 𝐸(𝑘2) − 1 − ℎ2

ℎ2 Π(ℎ2, 𝑘2)] 𝜉𝑘∣
𝜉+

𝜉−

. (80)

We can now compute the magnetic field. This will require derivatives of the elliptic inte-
grals[8]:

𝑑𝐾
𝑑𝑘 = 𝐸

𝑘(1 − 𝑘2) − 𝐾
𝑘 ,

𝑑𝐸
𝑑𝑘 = 𝐸

𝑘 − 𝐾
𝑘 ,

𝑑Π
𝑑𝑘 = 𝑘Π

𝑘2 − ℎ2 − 𝑘𝐾
(1 − 𝑘2)(ℎ2 − 𝑘2) . (81)

Finally we have[9]:

𝐵𝑟 = −𝜕𝑧A(r)𝜑 = 𝜇0𝑛𝐼
𝜋

√𝑅
𝑟 [𝑘2 − 2

𝑘 𝐾(𝑘2) + 2
𝑘𝐸(𝑘2)] 𝜉𝑘∣

𝜉+

𝜉−

, (82)

and,

𝐵𝑧 = 1
𝑟 𝜕𝑟 (𝑟A(r)𝜑) = 𝜇0𝑛𝐼

4𝑟𝜋
√

𝑅𝑟 [𝐾(𝑘2) + 𝑅 − 𝑟
𝑅 + 𝑟Π(ℎ2, 𝑘2)] 𝜉𝑘∣

𝜉+

𝜉−

. (83)
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Resistance

For example, we cannot independently change the number of turns in a coil without chang-
ing its total resistance and inductance. Similarly, changing the coil dimensions will change
the inductance. We need to choose the independent parameters and calculate everything
else. From a practical perspective, what we need to do is to pick up a wire type from Tab.
@ref(tab:conductorsDT), specified by its AWG number, select a coil holder, specified by its
diameter and height. We then wind 𝑁 turns as compactly as we can[10]. Once we do this, 𝐿𝑐
and 𝑅𝑐 will be completely determined from first principles. Therefore, the free parameters to
optimize are the coil height, wire type and the number of turns. The initial position of the
the magnet is the last parameter we can tune to optimize the performance.

Consider a coil with 𝑁 turns wound from radius 𝑟i to 𝑟o. The resistance of such a coil can be
calculated as:

R = 𝑁
𝑟o − 𝑟i

∫
𝑟o

𝑟i

𝜆2𝜋𝑟𝑑𝑟 = 2𝜋𝑁𝜆
𝑟o − 𝑟i

𝑟2

2 ∣
𝑟o

𝑟i

= 2𝜋𝑁𝜆
𝑟o − 𝑟i

𝑟2
o − 𝑟2

i
2 = 2𝜋𝑁𝜆

𝑟o − 𝑟i

(𝑟o − 𝑟i)(𝑟o + 𝑟i)
2

= 2𝜋𝑁𝜆𝑟o + 𝑟i
2 , (84)

where 𝜆 is the resistance per unit length. Also note that 𝑟o is not really a free parameter. It
will be fixed for a given wire type. A coil of height 𝐻 will have a total area of 𝐻 × (𝑟o − 𝑟i)
to fit in 𝑁 turns of wire. Assuming a packing density 𝛾, and a cross-sectional area 𝐴w for the
wire, we can write the following relation:

𝐻 × (𝑟o − 𝑟i)
𝐴w

𝛾 = 𝑁 (85)

Solving for 𝑟o, and putting it back in Eq. @ref(eq:coilres) gives:

R = 2𝜋𝑁𝜆 (𝑟i + 𝑁𝐴w
2𝛾𝐻 ) . (86)

The second term accounts for the fact that the radius of the coil will increase as more turns
are added, and each turn will get longer and contribute more to the resistance. This shows us
that adding more turns adds increasingly more resistance limiting the peak current. On the
flip side, more turns will result in more magnetic field at the same current. Another metric
we need to consider is the time it takes to reach to the peak current, which can be shown to
be ∝ 1√

𝐿 ∝ 1
𝑁 . Therefore, a coil with more turns will take longer to saturate. We will dive

deeper into these to see if there is an optimal solution for the value of 𝑁 .

Table @ref(tab:conductorsDT) is convenient for looking up a specific AWG number and locate
the properties.
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There is a formulation that can give us the same information with a fit function for the wire
diameter:

Dw = 0.127 𝑒𝑥𝑝 (36 − AWG
8.624889 ) . (87)

The resistivity per unit length can also be written as:

𝜆w = 𝜌
𝜋D2

w/4
, (88)

where 𝜌 is the copper resistivity in the units of Ω𝑚 with a typical value of 1.75 × 10−8Ω𝑚. It
is also important to note that the wire diameters are for the bare copper. The thickness of the
insulation should be included in winding calculations. A vendor provides the heavy insulation
thickness table for various AWG values. It is rather convenient to work with a formula for the
insulation thickness rather than the raw numbers, and their raw data can be conveniently fit
with a linear regression:

Additional Radius from Insulation[mm] = 0.0676 − 0.0014 × AWG, (89)

The results are shown in Fig. @ref(fig:insulationplot).

Figure 7: We take insulation data from a vendor. They provide the heavy insulation thickness
table for various AWG values. Their raw data can be conveniently fit with a linear
regression.

Inductance

However, there are certain empirical formulas that approximate the inductance values for a
reasonable range of geometrical parameters. The expression for the inductance for the long
coil limit, see Eq. 4, can be amended to get the Wheeler’s formula[11]:
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𝐿𝑐 = 31.6𝑁2𝑟2
a

6𝑟a + 9𝐻 + 10(𝑟o − 𝑟i)
, (90)

where 𝑟a = 𝑟o+𝑟i
2 is the average value of the radius. There are online calculators, such as

this one which uses the Wheeler’s formula. There are also calculators using the full blown
elliptical integrals, such as Coil32[12]. They don’t necessarily give the same answer. Wheeler’s
formula is convenient for computational reasons, however it is expected to be accurate only
when the coil thickness is similar to the coil height. We need to investigate this a bit further
and compare the predicted values against measured values.
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