
Potentials of a split cylindrical shell
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We solve for the electric potential of a cylindrical conductor split into two semi-
cylindrical shells held at different voltages. The solution employs a sequence of
two conformal transformations: first, a Möbius transformation maps the cylin-
drical boundaries to the real axis, followed by a logarithmic transformation that
converts the problem into a simple Cartesian geometry. This double transforma-
tion approach elegantly reduces a seemingly complex boundary value problem to a
straightforward solution of Laplace’s equation. The method showcases the power
of conformal mapping techniques in solving two-dimensional electrostatic problems
with nontrivial geometries.

blog: https://tetraquark.vercel.app/posts/cylinder_shells/

email: quarktetra@gmail.com

This is the second one of a series of posts on solving Laplace equation using conformal maps.
I have a recent introductory post on conformal maps. We will tackle a problem which is a bit
harder than the previous warm up exercise. In fact, we are going to double down and apply
conformal maps twice!

The setup

Consider a thin, long, conducting cylinder of unit radius split into two equal pieces. The
pieces are separated by a small gap and held at two different voltages. Figure 1 shows the
cross section of the setup. The goal is to calculate the electric potential and the electric field.
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Figure 1: The crosssection of a cylindrical shell split into two pieces.

Old school solution

We need to solve the Laplace equation in the cylindrical coordinates in two dimensions:

∇⃗2𝜑 = (1
𝑟

𝜕
𝜕𝑟 (𝑟 𝜕

𝜕𝑟) + 1
𝑟2

𝜕2

𝜕𝜃2 ) 𝜑 = 0, (1)

The boundary conditions are imposed at 𝑟 = 1:

𝜑(1, 𝜃) = { 0, 0 < 𝜃 < 𝜋,
𝑉𝑠, 𝜋 < 𝜃 < 2𝜋, (2)

where the angle 𝜃 is measured from the positive real axis. We can separate the variables as
𝜑(𝑟, 𝜃) = 𝐹(𝑟)𝐺(𝜃)

1
𝑟

𝑑
𝑑𝑟 (𝑟𝑑𝐹

𝑑𝑟 ) 𝐺 + 𝐹
𝑟2

𝑑2𝐺
𝑑𝜃2 = 0, , (3)

or equivalently

𝑟
𝐹

𝑑
𝑑𝑟 (𝑟𝑑𝐹

𝑑𝑟 ) = − 1
𝐺

𝑑2𝐺
𝑑𝜃2 . (4)
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Since the left-hand side of Eq. 4 depends on 𝑟 only, and the right one depends on 𝜃 only,
overall they can only be equal to a constant, which we will call 𝜈2. The partial differential
equation is then separated into two ordinary differential equations:

𝑟 𝑑
𝑑𝑟 (𝑟𝑑𝐹

𝑑𝑟 ) = 𝜈2𝐹, and 𝑑2𝐺
𝑑𝜃2 = −𝜈2𝐺. (5)

𝜈 = 0 case requires a bit of special treatment: A constant or ln(𝑟) will work for 𝐹 , and a first
order polynomial, 𝑎 + 𝑏 𝜃, will work for 𝐺. However, we will want our solution to not blow up
at 𝑟 = 0, and therefore we can’t include ln(𝑟). Furthermore, since 𝜃 is the angle, to preserve
the periodicity, we can’t have the 𝑏 𝜃 term. For 𝜈 ≠ 0, 𝐹 ∝ 𝑟±𝜈 and 𝐺 ∝ 𝑒±𝑖𝜈𝜃 will solve the
equations. But, again, the requirement of a finite solution at 𝑟 = 0 will eliminate 𝑟−𝜈 solutions
inside the cylinder. Finally, the periodicity will require 𝜈 to be an integer. As the equations
are linear, we can include them with arbitrary coefficients:

𝜑(𝑟, 𝜃) = 𝑎0 +
∞

∑
𝑛=1

𝑟𝑛 (𝑎𝑛𝑒𝑖𝑛𝜃 + 𝑏𝑛𝑒−𝑖𝑛𝜃) . (6)

We can now impose the boundary condition in Eq. 2:

𝜑(1, 𝜃) = 𝑎0 +
∞

∑
𝑛=1

(𝑎𝑛𝑒𝑖𝑛𝜃 + 𝑏𝑛𝑒−𝑖𝑛𝜃) . (7)

We can isolate the first Fouirier coefficient, 𝑎0:

∫
2𝜋

0
𝑑𝜃𝜑(1, 𝜃) = 2𝜋𝑎0 +

∞
∑
𝑛=1�������������:0

∫
2𝜋

0
𝑑𝜃 (𝑎𝑛𝑒𝑖𝑛𝜃 + 𝑏𝑛𝑒−𝑖𝑛𝜃) ⟹ 𝑎0 = 𝑉𝑠

2 , (8)

which is simply the average value of the voltage across the disk surface. Similarly

𝑎𝑛 = 1
2𝜋 ∫

2𝜋

0
𝑑𝜃𝑒−𝑖𝑛𝜃𝜑(1, 𝜃) = 𝑉𝑠

2𝜋 ∫
2𝜋

𝜋
𝑑𝜃𝑒−𝑖𝑛𝜃 = 𝑖𝑉𝑠

2𝜋𝑛 (1 − 𝑒−𝑖𝑛𝜋) = 𝑖𝑉𝑠
2𝜋𝑛 (1 − (−1)𝑛) ,(9)

and

𝑏𝑛 = 1
2𝜋 ∫

2𝜋

0
𝑑𝜃𝑒𝑖𝑛𝜃𝜑(1, 𝜃) = 𝑉𝑠

2𝜋 ∫
2𝜋

𝜋
𝑑𝜃𝑒𝑖𝑛𝜃 = −𝑖𝑉𝑠

2𝜋𝑛 (1 − 𝑒𝑖𝑛𝜋) = −𝑖𝑉𝑠
2𝜋𝑛 (1 − (−1)𝑛) ,(10)

which shows that only odd 𝑛 terms will contribute. To make this more explicit, let’s define
𝑛 = 2𝑚 + 1 where 𝑚 = 1, 2, ⋯ to get:
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𝜑(𝑟, 𝜃) = 𝑉𝑠
2 + 𝑉𝑠

𝜋
∞

∑
𝑚=1

𝑟2𝑚+1 ( 𝑖
2𝑚 + 1𝑒𝑖(2𝑚+1)𝜃 + complex conjugate)

= 𝑉𝑠
2 + 2𝑉𝑠

𝜋 ℜ
∞

∑
𝑚=1

( 𝑖
2𝑚 + 1 (𝑟𝑒𝑖𝜃)2𝑚+1) . (11)

The summation coefficients should remind you of arctan, but we need to massage it a bit. Let’s
define 𝜃 = ̃𝜃 + 𝜋/2 and take a look at the argument of the summation:

𝑖
2𝑚 + 1 (𝑟𝑒𝑖𝜃)2𝑚+1 = 𝑖

2𝑚 + 1 (𝑟𝑒𝑖 ̃𝜃+𝑖𝜋/2)
2𝑚+1

= 𝑖
2𝑚 + 1 (𝑟𝑒𝑖 ̃𝜃)

2𝑚+1
(𝑒𝑖𝜋)𝑚 (𝑒𝑖𝜋)1/2

= − (−1)𝑚

2𝑚 + 1 (𝑟𝑒𝑖 ̃𝜃)
2𝑚+1

= − (−1)𝑚

2𝑚 + 1 (𝑟𝑒𝑖(𝜃−𝜋/2))2𝑚+1 . (12)

Putting this back in Eq. 11 we get:

𝜑(𝑟, 𝜃) = 𝑉𝑠
2 − 2𝑉𝑠

𝜋 ℜ (
∞

∑
𝑚=1

(−1)𝑚

2𝑚 + 1 (𝑟𝑒𝑖(𝜃−𝜋/2))2𝑚+1) = 𝑉𝑠
2 − 2𝑉𝑠

𝜋 ℜ (arctan (𝑟𝑒𝑖(𝜃−𝜋/2))) .(13)

Now we have to push ℜ through arctan into the argument. For this, it is convenient to work
in a different representation of arctan. Consider the integral below:

∫ 𝑑𝑧 1
1 + 𝑧2 = ∫ 𝑑 tan 𝛼 1

1 + tan2 𝛼 = ∫ 𝑑𝛼 sec2 𝛼 cos2 𝛼 = ∫ 𝑑𝛼 = 𝛼 + 𝐶 = arctan(𝑧) + 𝐶, (14)

where we defined 𝑧 = tan 𝛼 and reverted back at the end of the computation. We can also
compute the integral using the partial fractions method:

∫ 𝑑𝑧 1
1 + 𝑧2 = 𝑖

2 ∫ 𝑑𝑧 ( 1
𝑖 + 𝑧 + 1

𝑖 − 𝑧 ) = 𝑖
2 ln (𝑖 + 𝑧

𝑖 − 𝑧 ) + 𝐶, (15)

where 𝐶 is a constant that will set the domain of the angle as well as the branch cut of ln.
Since Eqs.14 and 15 are equivalent, we have:

arctan(𝑧) = 𝑖
2 ln (𝑖 + 𝑧

𝑖 − 𝑧 ) . (16)

Let’s now take 𝑧 = 𝑥 + 𝑖𝑦, and push ℜ through arctan:

ℜ (arctan 𝑧) = ℜ ( 𝑖
2 ln (𝑖 + 𝑧

𝑖 − 𝑧 )) = 1
2ℑ (ln (𝑖 + 𝑧

𝑖 − 𝑧 )) = 1
2 (arctan (1 + 𝑦

𝑥 ) + arctan (1 − 𝑦
𝑥 )) .(17)
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We now need to figure out how to add the arctan’s on the right. Let’s derive that quickly.
Let’s define angles 𝛼 and 𝛽 with tan 𝛼 = 𝑎 and tan 𝛽 = 𝑏. We can use the formula for tangent
of sums

tan(𝛼 + 𝛽) = tan 𝛼 + tan 𝛽
1 − tan 𝛼 tan 𝛽 = 𝑎 + 𝑏

1 − 𝑎𝑏
⟹ arctan tan(𝛼 + 𝛽) = 𝛼 + 𝛽 = arctan 𝑎 + arctan 𝑏 = arctan 𝑎 + 𝑏

1 − 𝑎𝑏 . (18)

In our case, from Eq. 17, we have 𝑎 = 1+𝑦
𝑥 and 𝑏 = 1−𝑦

𝑥 , which gives:

ℜ (arctan 𝑧) = = 1
2 arctan (

2
𝑥

1 − 1−𝑦2
𝑥2

) = 1
2 arctan ( 2𝑥

1 − 𝑥2 − 𝑦2 ) = 1
2 arctan ( 2ℜ(𝑧)

1 − |𝑧|2 ) .(19)

Inserting this back into Eq. 13, we get:

𝜑(𝑟, 𝜃) = 𝑉𝑠
2 − 𝑉𝑠

𝜋 arctan (2𝑟 cos(𝜃 − 𝜋/2)
1 − 𝑟2 ) = 𝑉𝑠

2 − 𝑉𝑠
𝜋 arctan (2𝑟 sin(𝜃)

1 − 𝑟2 )

= 𝑉𝑠
2 − 𝑉𝑠

𝜋 (𝜋/2 − arccot (2𝑟 sin(𝜃)
1 − 𝑟2 )) = 𝑉𝑠

𝜋 arctan ( 1 − 𝑟2

2𝑟 sin(𝜃)) , (20)

which is the final answer for the electric potential inside the cylinder!

Mapping circles and lines

The boundary of the original problem consists of arcs of circle. We want to map those bound-
aries to Cartesian ones. A linear fractional transformation can accomplish this goal:

𝜔 = 𝑖1 − 𝑧
1 + 𝑧 . (21)

We can quickly verify what how the upper arc, 𝑧 = 𝑒𝑖𝜃, for 0 < 𝜃 < 𝜋 gets mapped.

𝜔 = 𝑖1 − 𝑒𝑖𝜃

1 + 𝑒𝑖𝜃 = 𝑖𝑒𝑖𝜃/2 (𝑒−𝑖𝜃/2 − 𝑒𝑖𝜃/2)
𝑒𝑖𝜃/2 (𝑒𝑖𝜃/2 + 𝑒𝑖𝜃/2) = tan(𝜃/2), (22)

which is the positive real axis on the 𝜔-plane. Similarly, the lower arc, 𝑧 = 𝑒−𝑖𝜃, for 0 < 𝜃 < 𝜋
gets mapped as:

𝜔 = 𝑖1 − 𝑒−𝑖𝜃

1 + 𝑒−𝑖𝜃 = 𝑖 𝑒−𝑖𝜃/2 (𝑒𝑖𝜃/2 − 𝑒−𝑖𝜃/2)
𝑒−𝑖𝜃/2 (𝑒−𝑖𝜃/2 + 𝑒−𝑖𝜃/2) = − tan(𝜃/2), (23)
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which is the negative real axis. The full mapping is shown in Figure 2 .

Figure 2: The first transformation maps the boundaries to the 𝑥 axis. Equipotential lines are
radial rays and electric field lines are arcs of circle. The second transformation maps
the lines onto the nice and clean Cartesian grid. The original boundary plates are
mapped to the horizontal lines at 0 and 𝜋 in the 𝛾 domain.

The fractional mapping in Eq. 21 moves the boundaries such that it becomes relatively easy
to solve the Laplace equation in cylindrical coordinates, see the earlier post. However, no one
is stopping us from doubling down and moving from 𝜔 plane to a new 𝛾 plane:

𝛾 = ln 𝜔 ≡ �̃� + 𝑖 ̃𝑣. (24)

It is convenient to use the polar parameterization in the 𝜔 plane, i.e., 𝜔 = 𝜌𝑒𝑖𝛼, and revisit Eq.
24:

𝛾 = ln 𝜔 = ln 𝜌 + 𝑖𝛼 = �̃� + 𝑖 ̃𝑣. (25)

As we are jumping from 𝑧 to 𝜔, and from 𝜔 to 𝛾, the electric potential transforms due to
its argument. You will find that it is pretty confusing already, and textbooks[1] add to this
confusion by using the same name for those functions. Let’s be very precise and clear up this
mess once and for all. 𝜑 is a function of the original variables, (𝑥, 𝑦) in Cartesian or (𝑟, 𝜃) in
cylindrical coordinates. We represent the original pair of variables as a complex parameter
𝑧 = 𝑥 + 𝑖𝑦 or 𝑧 = 𝑟𝑒𝑖𝜃. So, 𝜑 is a function of 𝑧: 𝜑(𝑧). Now 𝑧 gets mapped to 𝜔 by a function
𝜔 = 𝑓(𝑧) = 𝑖1−𝑧

1+𝑧 ≡ 𝑢 + 𝑖𝑣 ≡ 𝜌𝑒𝑖𝛼, which can be reverted as 𝑧 = 𝑓−1(𝜔). Inserting this back in
𝜑(𝑧), we get 𝜑(𝑧) = 𝜑 (𝑓−1(𝜔)) = (𝜑 𝑜 𝑓−1) (𝜔) ≡ 𝜙(𝜔).
𝜔 plane gets mapped to 𝛾 = 𝑔(𝜔) = ln 𝜔 ≡ �̃� + 𝑖 ̃𝑣, which can be inverted as 𝜔 = 𝑔−1(𝛾).
Putting this back in again will give: 𝜙(𝜔) = 𝜙(𝑔−1(𝛾)) = (𝜙 𝑜 𝑔−1) (𝛾) ≡ ̃𝜙(𝛾). To summarize,
we have the following functions:

𝜙 = 𝜑 𝑜 𝑓−1, and ̃𝜙 = 𝜙 𝑜 𝑔−1 = 𝜑 𝑜 𝑓−1 𝑜 𝑔−1 (26)
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The harmonic feature of the electric potential is preserved under the conformal maps, that
is:

(𝜕2
�̃� + 𝜕2

̃𝑣) ̃𝜙 = 0. (27)

The original boundary conditions at the upper and lower shells are mapped to ̃𝑣 = 0 and
̃𝑣 = 𝜋, respectively. With these boundary conditions, and realizing that the potential needs to

be constant along the 𝑢 axis, the Laplace equation reduces to

𝜕2
̃𝑣 ̃𝜙( ̃𝑣) = 0 ⟹ ̃𝜙( ̃𝑣) = 𝑉𝑠

̃𝑣
𝜋 . (28)

Finally, we revert from ̃𝑣 to 𝛼 using Eq. 25, namely, ̃𝑣 = 𝛼, which implies

𝜙(𝛼) = 𝑉𝑠
𝛼
𝜋 . (29)

Finally, note that 𝛼 is the phase of the complex variable 𝜔:

𝜔 = 𝑖1 − 𝑧
1 + 𝑧 = 𝑖(1 − 𝑧)(1 + 𝑧∗)

(1 + 𝑧)(1 + 𝑧∗) = 2𝑦 + 𝑖(1 − 𝑥2 − 𝑦2)
(1 + 𝑥)2 + 𝑦2 , (30)

which gives

𝜙(𝛼) = 𝜑(𝑥, 𝑦) = 𝑉𝑠
𝜋 arctan (1 − 𝑥2 − 𝑦2

2𝑦 ) . (31)

[1] J. W. Brown and R. V. Churchill, Complex variables and applications. McGraw-
Hill Higher Education, 2004 [Online]. Available: https://books.google.com/books?id=
4vfuAAAAMAAJ
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