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We solve the Dirac equation for a particle in a magnetic field using the method
of separation of variables. We find the energy levels and the wave functions for a
particle in a magnetic field.

In the natural units, ℏ = 𝑐 = 𝑘 = 1, the Dirac equation in the presence of the vector potential
reads

( 𝑚 𝜎⃗ ⋅ ⃗𝜋
𝜎⃗ ⋅ ⃗𝜋 −𝑚 ) ( 𝜒

𝜙 ) = 𝐸 ( 𝜒
𝜙 ) , (1)

where ⃗𝜋 = ⃗𝑃 − 𝑞 ⃗𝐴 . Multiplying the matrices we have two equations:

𝑚𝜒 + 𝜎⃗ ⋅ ⃗𝜋𝜙 = 𝐸𝜒, and 𝜎⃗ ⋅ ⃗𝜋𝜒 − 𝑚𝜙 = 𝐸𝜙. (2)

From the second equation we get 𝜙 = 𝜎⃗⋅𝜋⃗𝜒
𝐸+𝑚 . Plugging this back into the first one we get the

equation for 𝜒:
(𝐸2 − 𝑚2)𝜒 = (𝜎⃗ ⋅ ⃗𝜋)2 𝜒. (3)

We will use the identity
𝜎⃗ ⋅ ⃗𝐴𝜎⃗ ⋅ 𝐵⃗ = 𝐼 ⃗𝐴 ⋅ 𝐵⃗ + 𝑖( ⃗𝐴 × 𝐵⃗) ⋅ 𝜎⃗. (4)

For our case ⃗𝐴 = 𝐵⃗ = ⃗𝜋 . Note that, unlike regular vectors, ⃗𝜋 × ⃗𝜋 ≠ 0. This is because ⃗𝜋
contains a function of 𝑥, ⃗𝐴(𝑥) , which does not commute with ⃗𝑃 . Let’s calculate what it is
using the 𝜖𝑖𝑗𝑘 symbol:

( ⃗𝜋 × ⃗𝜋)𝑖 = 𝜖𝑖𝑗𝑘𝜋𝑗𝜋𝑘 = 𝜖𝑖𝑗𝑘 [𝑃𝑗(−𝑞𝐴𝑘) + (−𝑞𝐴𝑗)𝑃𝑘] = 𝑖𝑞𝜖𝑖𝑗𝑘 [(𝜕𝑗𝐴𝑘) + 𝐴𝑘𝜕𝑗 + 𝑞𝐴𝑗𝜕𝑘] = 𝑖𝑞(∇⃗ × ⃗𝐴)𝑖
= 𝑖𝑞𝐵𝑖, (5)

where we dropped symmetric terms 𝑃𝑗𝑃𝑘 , 𝐴𝑗𝐴𝑘 and 𝐴𝑘𝜕𝑗 + 𝐴𝑗𝜕𝑘 since they are contracted
with 𝜖𝑖𝑗𝑘. Also note that in this notation, operators act on everything on the right side unless
they are in parenthesis, that is 𝜕𝑗𝐴𝑘 = (𝜕𝑗𝐴𝑘) + 𝐴𝑘𝜕𝑗 .) Then the equation for 𝜒 becomes

(𝐸2 − 𝑚2)𝜒 = (𝐼 ⃗𝜋2 − 𝑞𝐵⃗ ⋅ 𝜎⃗) 𝜒. (6)
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We choose ⃗𝐴 = −𝑦𝐵0 ̂𝑖 for which Eq. 6 becomes

(𝐸2 − 𝑚2)𝜒 = [𝐼((𝑃𝑥 + 𝑞𝑦𝐵0)2 + 𝑃 2
𝑦 + 𝑃 2

𝑧 ) − 𝑞𝐵0𝜎𝑧] 𝜒. (7)

Note that Eq. 7 has no 𝑥 and 𝑧 dependence which suggests that the solutions must be plane
waves along the 𝑥 and 𝑧 axis, that is 𝜉 = 𝜁 𝑒𝑖𝑝𝑥𝑥+𝑖𝑝𝑧𝑧 . The new equation in 𝜁 becomes

[𝐼 ((𝑃𝑥 + 𝑞𝑦𝐵0)2 − 𝑑2

𝑑𝑦2 − 𝐸2 − 𝑚2 + 𝑃 2
𝑧 ) + 𝑞𝐵0𝜎𝑧] 𝜁 = 0. (8)

Note the changes: the operators 𝑃𝑥 and 𝑃𝑧 became 𝑝𝑥 and 𝑝𝑧 because of the plane wave
expansion. Now we rewrite the equation once more,

[𝐼 ( 𝑑2

𝑑𝑦2 − (𝑝𝑥 + 𝑞𝑦𝐵0)2 + 𝐸2 − 𝑚2 − 𝑝2
𝑧) + 𝑞𝐵0𝜎𝑧] 𝜁 = 0. (9)

In terms of the components we have

⎛⎜⎜⎜⎜⎜
⎝

𝑑2
𝑑𝑦2 − (𝑝𝑥 + 𝑞𝑦𝐵0)2 0

+𝐸2 − 𝑚2 − 𝑝2
𝑧 + 𝑞𝐵0

𝑑2
𝑑𝑦2 − (𝑝𝑥 + 𝑞𝑦𝐵0)2

0 +𝐸2 − 𝑚2 − 𝑝2
𝑧 − 𝑞𝐵0

⎞⎟⎟⎟⎟⎟
⎠

( 𝜁+

𝜁− ) = 0. (10)

We have two decoupled equations which differ by the sign of the 𝐵0 term only. We can
actually combine them into one form introducing a parameter which simply encodes that sign,
namely

( 𝑑2

𝑑𝑦2 − (𝑝𝑥 + 𝑞𝑦𝐵0)2 + 𝐸2 − 𝑚2 − 𝑝2
𝑧 + 𝑠𝑞𝐵0) 𝜁𝑠 = 0, (11)

where 𝑠 = ± . We are almost there since our equation is familiar; it is like the differential
equation for Hermite polynomials. We can reveal that it is indeed the case if we define a
dimensionless parameter 𝜉 = √𝑞𝐵0(𝑦 + 𝑝𝑥

𝑞𝐵0
) . In this new variable we have,

( 𝑑2

𝑑𝜉2 − 𝜉2 + 𝑎𝑠) 𝜁𝑠 = 0, (12)

where
𝑎𝑠 = 𝐸2 − 𝑚2 − 𝑝2

𝑧 + 𝑠𝑞𝐵0
|𝑞|𝐵0

. (13)

From the harmonic oscillator solution we know that Eq. 12 admits normalizable solutions only
if 𝑎𝑠 = 2𝜈 + 1 where 𝜈 = 0, 1, 2, ⋯ . Finally we solve Eq. 13 for 𝐸 to get,

𝐸 = √(2𝜈 + 1)|𝑞|𝐵0 + 𝑚2 + 𝑝2𝑧 − 𝑠𝑞𝐵0. (14)

Some comments on our final result: first note that there is a continuous parameter 𝑝𝑧 in the
answer, so we can change the energy continuously. But this is the trivial part of the result since
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nothing depends on 𝑧 it is obvious that energy will change with 𝑝2
𝑧 in the way the relativistic

energy-momentum relation requires. Assume 𝑝𝑧 is fixed. There are two parameters left, 𝜈 and
𝑠 . 𝜈 labels the level of the harmonic oscillator, and 𝑠 labels the spin. For each 𝜈, there are
two levels of energy corresponding to spin up and spin down states. Note that the energy is
dominated by the mass term for non relativistic particles. Let’s expand it out to linearize it:

𝐸 = 𝑚√1 + (2𝜈 + 1)|𝑞|𝐵0/𝑚2 + 𝑝2𝑧/𝑚2 − 𝑠𝑞𝐵0/𝑚2 ≃ 𝑚 + (2𝜈 + 1)|𝑞|𝐵0
2𝑚 − 𝑠𝑞

2𝑚𝐵0. (15)

𝑠𝑞
2𝑚 term in front of 𝐵0 is the dipole moment of the fermion, and the 1/2 factor is correctly
produced by the Dirac theory.
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