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This article presents a comprehensive analysis of the forced and damped har-
monic oscillator, covering both the mass-spring system and its electrical RLC cir-
cuit analog. We derive the complete analytical solution using Laplace transforms
and explore the resonance phenomenon where the amplitude grows linearly with
time. Interactive visualizations demonstrate the system’s behavior under various
driving frequencies and damping conditions.
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Harmonic Oscillator

Consider the two distinct physical systems illustrated below in Figure 1:
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Figure 1: Left: Mass–spring–damper driven by an external force. Right: RLC circuit driven
by an AC source.

Although they are totally different physical systems, the differential equations governing them
are very similar, and they can be written as:
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Table 1: Descriptions of the parameters for the mass-spring system and RLC circuit

Spring-Mass RLC circuit
Parameter Description Parameter Description

𝑘 Spring constant 𝐶 Capacity
𝑐 Damping coefficient 𝑅 Resistance
𝑚 Mass of the object 𝐿 Inductance

𝑓(𝑡) External force 𝑉 (𝑡) External Voltage

𝑚𝑑2𝑥
𝑑𝑡2 + 𝑐𝑑𝑥

𝑑𝑡 + 𝑘𝑥 = 𝑓(𝑡) (Newton’s second law) (1)

𝐿𝑑2𝑄
𝑑𝑡2 + 𝑅𝑑𝑄

𝑑𝑡 + 𝑄
𝐶 = 𝑉 (𝑡) (Kirchhoff’s Voltage Law). (2)

(3)

The parameters are described in Table 1.

Analytical solution

Let’s concentrate on Eq. 1, and divide the equation by 𝑚. The simplified differential equation
for forced harmonic oscillator with damping reads:

̈𝑥 + 2𝜁𝜔0 ̇𝑥 + 𝜔2
0𝑥 = 𝑓(𝑡)

𝑚 , 𝑥(0) = 𝑥0, and ̇𝑥(0) = ̇𝑥0, (4)

where ̇𝑥 ≡ 𝑑𝑥
𝑑𝑡 , 𝜔0 ≡ √ 𝑘

𝑚 is the natural frequency of the oscillation, and 𝜁 ≡ 𝑐
2

√
𝑚𝑘 is the

damping ratio. We also included the initial conditions. We are dealing with an in-homogeneous
linear differential equation with constant coefficients. One of the best tools to solve such
equations is the Laplace transformation:

𝑋(𝑠) = ℒ[𝑥(𝑡)] = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡𝑥(𝑡). (5)

The nice feature of the Laplace transformation is that it converts differential equations to
algebraic equations. It follows from the transformation property of the derivatives:
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ℒ[ ̇𝑥(𝑡)] = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡 𝑑𝑥

𝑑𝑡 = ∫
∞

0
𝑑𝑡 𝑑

𝑑𝑡(𝑒−𝑠 𝑡𝑥) − ∫
∞

0
𝑑𝑡( 𝑑

𝑑𝑡𝑒−𝑠 𝑡)𝑥 (6)

= (𝑒−𝑠 𝑡𝑥)∣
∞

0
+ 𝑠 ∫

∞

0
𝑑𝑡𝑒−𝑠 𝑡𝑥 = 𝑠𝑋(𝑠) − 𝑥0.

Similarly the second order derivative transforms as

ℒ[ ̈𝑥(𝑡)] = 𝑠ℒ[ ̇𝑥(𝑡)] − ̇𝑥0 = 𝑠2𝑋(𝑠) − 𝑠𝑥0 − ̇𝑥0. (7)

Laplace transforming Eq. 4 we get

𝑠2𝑋 − 𝑠𝑥0 − ̇𝑥0 + 2𝜁𝜔0(𝑠𝑋 − 𝑥0) + 𝜔2
0𝑋 = 1

𝑚𝐹(𝑠). (8)

Solving Eq. 8 for 𝑋, we get

𝑋 = 𝑠𝑥0 + 2𝜁𝜔0𝑥0 + ̇𝑥0
𝑠2 + 2𝜁𝜔0𝑠 + 𝜔2

0
+ 1

𝑚
𝐹(𝑠)

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔2
0

= (𝑠 + 𝜁𝜔0)𝑥0 + 𝜁𝜔0𝑥0 + ̇𝑥0
(𝑠 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2) + 1
𝑚

𝐹(𝑠)
(𝑠 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2) . (9)

In order to evaluate the inverse Laplace transform, we need to know the functional form of
the driving force. Let’s assume that 𝑓(𝑡) is of the following form:

𝑓(𝑡) = 𝑓0 sin(𝜔𝑡). (10)

Its Laplace transform is given by:

𝐹(𝑠) ≡ ℒ[𝑓(𝑡)] = 𝑓0𝜔
𝑠2 + 𝜔2 . (11)

We will have to do some partial fraction expansion:

1
((𝑠 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2)) (𝑠2 + 𝜔2) = 𝐴(𝑠 + 𝜁𝜔0) + 𝐵
(𝑠 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2) + 𝐶𝑠 + 𝐷
𝑠2 + 𝜔2 , (12)

which will be easy to convert back to time domain since they will correspond to sines and
cosines with exponential functions in front. We now need to figure out 𝐴, 𝐵, 𝐶 and 𝐷. If we
were to equate the denominators and sum up the resulting numerators, we will see that, in
order to set the coefficient of the 𝑠3 term in the numerator to zero we will need 𝐴 = −𝐶. To
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relate 𝐶 and 𝐷 we can multiply 12 by 𝑠 − 𝑖𝜔 and then set 𝑠 = 𝑖𝜔. This will remove the first
term on the right hand side and yield:

𝑖𝜔𝐶 + 𝐷 = 1
(𝑖𝜔 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2) (13)

This is a complex equation, and splitting it into the real and imaginary part, we get:

𝐷(𝜔2
0 − 𝜔2) − 2𝐶𝜔2𝜔0𝜁 = 1

𝐶𝜔(𝜔2
0 − 𝜔2) + 2𝐷𝜔𝜔0𝜁 = 0. (14)

Inverting it, we get:

𝐶 = −2𝜔0𝜁
(𝜔2

0 − 𝜔2)2 + 4𝜔2𝜔2
0𝜁2

𝐷 = 𝜔2
0 − 𝜔2

(𝜔2
0 − 𝜔2)2 + 4𝜔2𝜔2

0𝜁2 (15)

Finally, setting 𝑠 = −𝜁𝜔0, and going trough some algebra we get.

𝐵 = 𝜔2 − 𝜔2
0 + 2𝜔2

0𝜁2

(𝜔2
0 − 𝜔2)2 + 4𝜔2𝜔2

0𝜁2 . (16)

We can now inverse transform Eq. 9 using elementary properties of the transformation:

𝑥(𝑡) = ℒ−1[𝑋(𝑠)]. (17)

Inverse Laplace transformation yields.

𝑥(𝑡) = [𝑥0 cos(𝜔0√1 − 𝜁2 𝑡) + 𝜁𝜔0𝑥0 + ̇𝑥0
𝜔0√1 − 𝜁2 sin(𝜔0√1 − 𝜁2 𝑡)] 𝑒−𝜁𝜔0𝑡

+2𝑓0𝜔
𝑚

𝜔0𝜁
(𝜔2

0 − 𝜔2)2 + 4𝜔2𝜔2
0𝜁2 𝑒−𝜁𝜔0𝑡 cos(𝜔0√1 − 𝜁2 𝑡)

+𝑓0𝜔
𝑚

1
𝜔0√1 − 𝜁2

𝜔2 − 𝜔2
0 + 2𝜔2

0𝜁2

(𝜔2
0 − 𝜔2)2 + 4𝜔2𝜔2

0𝜁2 𝑒−𝜁𝜔0𝑡 sin(𝜔0√1 − 𝜁2 𝑡)

−2𝑓0𝜔
𝑚

𝜔0𝜁
(𝜔2

0 − 𝜔2)2 + 4𝜔2𝜔2
0𝜁2 cos(𝜔 𝑡) + 𝑓0

𝑚
𝜔2 − 𝜔2

0
(𝜔2

0 − 𝜔2)2 + 4𝜔2𝜔2
0𝜁2 sin(𝜔 𝑡). (18)

We can do one last touch and combine the last two terms into as single function with a phase
shift.
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The full solution with damping with 𝑓(𝑡) = 𝑓0 sin(𝜔 𝑡), can be written as:

𝑥(𝑡) = [𝑥0 cos(𝜔0√1 − 𝜁2 𝑡) + 𝜁𝜔0𝑥0 + ̇𝑥0
𝜔0√1 − 𝜁2 sin(𝜔0√1 − 𝜁2 𝑡)] 𝑒−𝜁𝜔0𝑡

+ 𝑓0𝜔𝑒−𝜁𝜔0𝑡

𝑚[(𝜔2
0 − 𝜔2)2 + 4𝜔2𝜔2

0𝜁2] [2𝜔0𝜁 cos(𝜔0√1 − 𝜁2 𝑡) + 𝜔2 − 𝜔2
0 + 2𝜔2

0𝜁2

𝜔0√1 − 𝜁2 sin(𝜔0√1 − 𝜁2 𝑡)]

+ 𝑔
𝑚√(𝜔2

0 − 𝜔2)2 + 4𝜔2𝜔2
0𝜁2 sin(𝜔 𝑡 − 𝛿) (19)

where 𝛿 ≡ arctan [ 2𝜔 𝜔0𝜁
𝜔2

0−𝜔2 ] , the first line is related to the initial conditions, the second and
third lines are the transient response, and finally the last line is the steady state solution.

Few observations:

At later times, 𝑡 ≫ 1/(𝜁𝜔0), i.e., in the steady state, only the last term survives.

The 𝑥(𝑡) is sinusoidal, but it will lag by a phase 𝛿.

The sytem will enter in resonance at 𝜔 = 𝜔0
√1 − 2𝜁.

The value of the resonance amplitude is 𝑓0/(2𝜔2
0𝜁√1 − 𝜁2)

At 𝜁 = 0 (no damping), the amplitude diverges. We need to go back and study this case
carefully.

Resonances at zero damping: The final solution runs into problems when we consider 𝜁 = 0
and 𝜔 = 𝜔0: the coefficient of the steady state solution diverges. This is because of the
assumptions we made when we were inverting 𝑋(𝑠). At 𝜁 = 0 and 𝜔 = 𝜔0, two poles will
merge and create a second order pole. Let’s take a closer look:

lim
𝜁→0, 𝜔→𝜔0

1
((𝑠 + 𝜁𝜔0)2 + 𝜔2

0(1 − 𝜁2)) (𝑠2 + 𝜔2
0) = 1

(𝑠2 + 𝜔2
0)2 . (20)

We can figure out how to inverse transform it by exploiting few features of the Laplace trans-
forms as follows:

ℒ−1 [ 1
(𝑠2 + 𝜔2

0)2 ] = ℒ−1 [− 1
2𝑠

𝑑
𝑑𝑠 ( 1

𝑠2 + 𝜔2
0

)] = −1
2 ∫

𝑡

0
𝑑𝜏𝜏 sin(𝜔0𝜏)

𝜔0

= − 1
2𝜔0

𝑑
𝑑𝜔0

∫
𝑡

0
𝑑𝜏 cos(𝜔0𝜏) = − 1

𝜔0

𝑑
𝑑𝜔0

[sin(𝜔0𝑡)
𝜔0

]

= sin(𝜔0𝑡) − 𝜔0𝑡 cos(𝜔0𝑡)
2𝜔3

0
(21)
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The full solution at the resonance frequency(𝜔 = 𝜔0 ) with no damping (𝜁 = 0) is:

𝑥(𝑡) = [𝑥0 cos(𝜔0 𝑡) + ̇𝑥0
𝜔0

sin(𝜔0 𝑡)] + [ 𝑓0
2𝑚𝜔2

0
(sin(𝜔0𝑡) − 𝜔0𝑡 cos(𝜔0𝑡))] . (22)

This shows that the amplitute will grow with time. In reality the model will break at some
point since the ampliture of oscillations cannot grow indefinitely. (For example, the spring will
literaly break if it is stretched too far.)

Visuals

Find the interactive harmonic oscillator simulation here.

Figure 2: The plot of harmonic oscillator with driving force and damping.
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