Integral of the month: $\int dr \cos r^2$

2024-02-01

Fresnel integrals are a pair of integrals that are used to calculate the diffraction patterns of light waves. This post explores the mathematics of Fresnel integrals, a fundamental wave phenomenon that limits the resolution of optical instruments like telescopes. We first derive the results in the large r limit using the residue theorem. Then we will see how to evaluate the integrals numerically.

blog: https://tetraquark.vercel.app/posts/integral_fresnel/

email: quarktetra@gmail.com

The Fresnel integrals are defined as follows:

$$S(t) = \int_0^t dr \sin r^2,$$

$$C(t) = \int_0^t dr \cos r^2.$$
(1)

For a general value of t, the integrals need to be evaluated numerically. However, the asymptotic values C(t) and S(t) can be calculated via the closed contour integral below:

$$I = \oint_C dz e^{-z^2}.$$
 (2)

where the contour C is illustrated in Figure 1.

Figure 1: The contour to evaluate the integral. The return path, γ_1 , is chosen such that the integrand reduces to the regular Gaussian.

Let's first evaluate the integral on γ_0 in the limit $R \to \infty$:

$$I_{\gamma_0} = \lim_{R \to \infty} \int_0^R dr e^{-r^2} = \frac{\sqrt{\pi}}{2},$$
 (3)

where the details of the derivation can be found here. Now consider the (absolute value of the) integral on γ_R in the limit $R \to \infty$:

$$\begin{split} \left|I_{\gamma_R}\right| &= \left|\lim_{R\to\infty} R \int_0^{\frac{\pi}{4}} d\theta e^{i\theta} e^{-R^2(\cos^2\theta - \sin^2\theta + 2i\cos\theta\sin\theta)}\right| = \left|\lim_{R\to\infty} R \int_0^{\frac{\pi}{4}} d\theta e^{i\theta + i\sin(2\theta)} e^{-R^2\cos(2\theta)}\right| \\ &\leq \left|\lim_{R\to\infty} R \int_0^{\frac{\pi}{4}} d\theta e^{-R^2\cos(2\theta)}\right|. \end{split} \tag{4}$$

Let's try to put a bound on $\cos(2\theta)$ in the range $0 \le \theta \le \pi/4$. At $\cos(2\theta)|_{\theta=0} = 1$ and $\cos(2\theta)|_{\theta=\pi/4} = 0$. We can draw a line that connects these two points: $1 - \frac{4\theta}{\pi}$. Since $\frac{d^2}{d\theta^2}\cos(2\theta) = -4\cos(2\theta) < 0$ for $0 < \theta < \pi/4$, we know that $\cos(2\theta) < 1 - \frac{4\theta}{\pi}$ in this range. This observation is illustrated in **?@fig-cosplot**.

```
//| echo: false
//| label: fig-cosplot
//| fig-cap: $\cos 2\theta$ and a bound on it with the line $1-\frac{4\theta}{\pi}$

cosPlot = {
    // Your existing plot div will be created and managed by Observable
    const element = DOM.element('div');
    element.style.width = "100%";
    element.id = "cosPlot";
    return element;
}
```

We can now go back to Eq. 6 and make use of the bound:

$$\begin{split} \left|I_{\gamma_{R}}\right| & \leq \left|\lim_{R\to\infty} R \int_{0}^{\frac{\pi}{4}} d\theta e^{-R^{2}\cos(2\theta)}\right| \leq \left|\lim_{R\to\infty} R \int_{0}^{\frac{\pi}{4}} d\theta e^{-R^{2}(1-\frac{4\theta}{\pi})}\right| \\ & = \left|\lim_{R\to\infty} Re^{-R^{2}} \int_{0}^{\frac{\pi}{4}} d\theta e^{R^{2}\frac{4\theta}{\pi}}\right| \leq \left|\lim_{R\to\infty} R \frac{\pi}{4R^{2}} \left(1-e^{-R^{2}}\right)\right| \\ & = \left|\lim_{R\to\infty} \frac{\pi}{4R} \left(1-e^{-R^{2}}\right)\right| = 0. \end{split} \tag{5}$$

Finally, let's look at the integral on γ_1 in the limit $R \to \infty$:

$$\begin{split} I_{\gamma_1} &= \lim_{R \to \infty} R \int_{R}^{0} dr e^{\frac{i\pi}{4}} e^{-r^2 \frac{i\pi}{2}} = -\frac{1+i}{\sqrt{2}} \lim_{R \to \infty} \int_{0}^{R} dr \left(\cos r^2 - i \sin r^2\right) \\ &= -\frac{1+i}{\sqrt{2}} \int_{0}^{\infty} dr \left(\cos r^2 - i \sin r^2\right) \\ &= -\frac{1}{\sqrt{2}} \left(\int_{0}^{\infty} dr \cos r^2 + \int_{0}^{\infty} dr \sin r^2 + i \left[\int_{0}^{\infty} dr \cos r^2 - \int_{0}^{\infty} dr \sin r^2 \right] \right). \end{split} \tag{6}$$

As we have computed individual pieces of the integral Eq. 2, we can assemble them and state that they need to add to 0 since e^{-z^2} is analytic everywhere. Therefore we have:

$$\begin{split} I &= & \oint_C dz e^{-z^2} = 0 = I_{\gamma_0} + I_{\gamma_R} + I_{\gamma_1} \\ &= & \frac{\sqrt{\pi}}{2} + 0 - \frac{1}{\sqrt{2}} \left(\int_0^\infty dr \cos r^2 + \int_0^\infty dr \sin r^2 + i \left[\int_0^\infty dr \cos r^2 - \int_0^\infty dr \sin r^2 \right] \right). \end{split} (7)$$

Matching the real and imaginary parts, we get:

$$\frac{1}{\sqrt{2}} \left(\int_0^\infty dr \cos r^2 + \int_0^\infty dr \sin r^2 \right) = \frac{\sqrt{\pi}}{2},$$

$$\frac{1}{\sqrt{2}} \left(\int_0^\infty dr \cos r^2 - \int_0^\infty dr \sin r^2 \right) = 0,$$
(8)

from which we get

$$\int_0^\infty dr \cos r^2 = \int_0^\infty dr \sin r^2 = \frac{1}{2} \sqrt{\frac{\pi}{2}} \simeq 0.626.$$
 (9)

Now we can conclude with the plots of the Fresnel integrals in ?@fig-parametricplot .

```
//| echo: false
//| label: fig-parametricplot
//| fig-cap: "Left: Fresnel integrals as a function of their argument, Right: parametric plot

parametricPlot = {
    // Your existing plot div will be created and managed by Observable
    const element = DOM.element('div');
    element.style.width = "100%";
    element.id = "parametricPlot";
    return element;
}
```