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This article presents a fun exercise in complex analysis by evaluating the integral
∫∞
0

𝑥𝛼𝑑𝑥
𝑥2−2𝛽𝑥+1 using residue calculus. We explore the keyhole contour method to

handle the branch cut created by the non-integer power 𝑥𝛼, and derive closed-form
solutions for various parameter ranges. The approach demonstrates the elegance of
complex integration techniques in solving seemingly difficult real integrals, making
it an excellent pedagogical example for students learning residue theory and contour
integration.

blog: https://tetraquark.vercel.app/posts/integral_key_hole/?src=pdf

email: quarktetra@gmail.com

The domain of convergence

We want to compute the integral 𝐼 = ∫∞
0 𝑑𝑥 𝑥𝛼

𝑥2−2𝛽𝑥+1 for a range of real-valued parameters
𝛼 and 𝛽. Since the denominator is quadratic, we need to have 𝛼 < 1 so that the integral
converges. Additionally, if 𝛼 is an integer, the integral can be evaluated by partial fractions.
Therefore, we will assume that 𝛼 is not an integer. Furthermore, in order for the integral
to converge, we also require −1 < 𝛼. The other thing we have to check is the poles of the
denominator. We first upgrade the real-valued parameter 𝑥 to a complex number 𝑧, and define
𝑓(𝑧):

𝑓(𝑧) ≡ 𝑧𝛼

𝑧2 − 2𝛽𝑧 + 1 = 𝑧𝛼

(𝑧 − 𝑧1)(𝑧 − 𝑧2) (1)

where 𝑧1,2 = 𝛽 ± √𝛽2 − 1 as shown in ?@fig-roots.
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Figure 1: figcapPDF

If the roots fall on the positive real x-axis, the integral will diverge. From the plot we observe
that if 𝛽 < 1, the roots will not be on the positive x-axis. Therefore, the integral will be well
defined for 𝛽 < 1 and −1 < 𝛼 < 1.

The key-hole contour

Due to the 𝑥𝛼 term with non-integer 𝛼, the integral has a branch cut. We can take the positive
x-axis as the cut as shown in Figure 2.
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Figure 2: Key-hole contour to evaluate the integral. The dashed lines show the possible posi-
tions of the two poles.

Using the residue theorem, we can write:

∮ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 (Res(𝑓, 𝑧1) + Res(𝑓, 𝑧2)) = 2𝜋𝑖 ( 𝑧𝛼
1

𝑧1 − 𝑧2
+ 𝑧𝛼

2
𝑧2 − 𝑧1

)

= 𝜋𝑖
√𝛽2 − 1

[(𝛽 + √𝛽2 − 1)
𝛼

− (𝛽 − √𝛽2 − 1)
𝛼

] (2)
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On the left-hand side, the integrals over the circles 𝐶𝑅 and 𝐶𝜖 vanish. We just need to figure
out what happens on 𝐶1,2. The integral on 𝐶2 is the original integral we are looking to solve.
The one on 𝐶1 is

∫
𝐶1

𝑑𝑧𝑓(𝑧) = ∫
𝐶1

𝑑𝑥 𝑥𝛼𝑒𝑖2𝜋𝛼

𝑥2 − 2𝛽𝑥 + 1 = − ∫
∞

𝜖

𝑥𝛼𝑒𝑖2𝜋𝛼

𝑥2 − 2𝛽𝑥 + 1 = −𝑒𝑖2𝜋𝛼𝐼 (3)

Therefore, the final result is

𝐼 = 𝜋𝑖
√𝛽2 − 1(1 − 𝑒𝑖2𝜋𝛼)

[(𝛽 + √𝛽2 − 1)
𝛼

− (𝛽 − √𝛽2 − 1)
𝛼

] (4)

Various interesting cases

Let us look at a few specific cases.

𝛽 = 0 case

The roots are 𝑧1,2 = ±𝑖. The corresponding integral becomes:

𝐼 = ∫
∞

0
𝑑𝑥 𝑥𝛼

𝑥2 + 1 = 𝜋𝑖
𝑖(1 − 𝑒𝑖2𝜋𝛼) [𝑖𝛼 − (−𝑖)𝛼] = 𝜋

1 − 𝑒2𝜋𝑖𝛼 [𝑒𝑖𝜋𝛼/2 − 𝑒3𝜋𝑖𝛼/2]

= 𝜋
𝑒−𝑖𝜋𝛼 − 𝑒𝑖𝜋𝛼 [𝑒−𝑖𝜋𝛼/2 − 𝑒𝑖𝜋𝛼/2] = 𝜋 sin(𝜋𝛼/2)

sin(𝜋𝛼) = 𝜋
2 cos(𝜋𝛼/2) (5)

𝛽 = −1/
√

2 case

The roots are {𝑧1, 𝑧2} = {𝑒3𝜋𝑖/4, 𝑒5𝜋𝑖/4}, and √𝛽2 − 1 = 1/
√

2 The corresponding integral
reads:

𝐼 = ∫
∞

0
𝑑𝑥 𝑥𝛼

𝑥2 +
√

2𝑥 + 1
= 𝑖𝜋

√
2

(1 − 𝑒2𝜋𝑖𝛼) [𝑒3𝜋𝑖𝛼/4 − 𝑒5𝜋𝑖𝛼/4] =
√

2𝜋 sin(𝜋𝛼/4)
sin(𝜋𝛼) (6)
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𝛽 = −1 case

This is a tricky case since the roots merge. We can either fall back onto the computation
of residues with higher order poles, or we can simply approach this limit carefully by setting
𝛽 = −1 + 𝜖 to get 𝑧1,2 = −1 ± 𝛿 where 𝛿 ≡

√
2𝜖 is a small positive number. Equivalently,

{𝑧1, 𝑧2} = {−𝑒−𝑖𝛿, −𝑒𝑖𝛿} and √𝛽2 − 1 = 𝛿. Then the integral becomes:

𝐼 = ∫
∞

0
𝑑𝑥 𝑥𝛼

𝑥2 + 2𝑥 + 1 = 𝜋𝑖
𝛿(1 − 𝑒2𝜋𝑖𝛼)𝑒𝑖𝜋𝛼 [𝑒−𝑖𝛿𝛼 − 𝑒𝑖𝛿𝛼] = 𝜋𝛼

sin(𝜋𝛼) (7)

Putting it all together

Note that the complete answer is already given in Eq.4. One could simply plug in numbers
and get the answer. However, it requires surgical precision to compute the function due to the
branch cut: if one is not careful enough, they will cross the cut, and the result will be messed
up due to the multi-valued nature of the functions. So let’s dive into the expression in Eq.4
and simplify it very carefully.

0 ≤ 𝛽 < 1 case

In this range of 𝛽 we will have 𝑧1 = 𝛽 + 𝑖√1 − 𝛽2 ≡ 𝑒𝑖𝜃 where 𝜃 = arctan [√1−𝛽2

𝛽 ], and
𝑧2 = 𝛽 − 𝑖√1 − 𝛽2 ≡ 𝑒2𝜋𝑖−𝑖𝜃. 𝑧1 is in the first quadrant and 𝑧2 is in the fourth. Note that we
defined the angle of 𝑧2 so that we don’t cross the branch cut. We can write 𝐼 as

𝐼 = 𝜋𝑖
𝑖√1 − 𝛽2(1 − 𝑒𝑖2𝜋𝛼)

[𝑒𝑖𝜃𝛼 − 𝑒2𝜋𝛼𝑖−𝑖𝜃𝛼] = 𝜋
√1 − 𝛽2

sin [𝛼(𝜋 − 𝜃)]
sin(𝜋𝛼)

= 𝜋
√1 − 𝛽2

sin {𝛼 (𝜋 − arctan [√1−𝛽2

𝛽 ])}
sin(𝜋𝛼) (8)

−1 ≤ 𝛽 < 0 case

In this range of 𝛽 we will have 𝑧1 = 𝛽 + 𝑖√1 − 𝛽2 ≡ 𝑒𝑖(𝜋−𝜃) where 𝜃 = arctan [√1−𝛽2

|𝛽| ], and
𝑧2 = 𝛽 − 𝑖√1 − 𝛽2 ≡ 𝑒𝑖(𝜋+𝜃). Note that we again defined the angle of 𝑧2 so that we don’t cross
the branch cut. 𝑧1 is in the second quadrant and 𝑧2 is in the third. We can write 𝐼 as

𝐼 = 𝜋𝑖
𝑖√1 − 𝛽2(1 − 𝑒𝑖2𝜋𝛼)

𝑒𝑖𝜋𝛼 [𝑒−𝑖𝜃𝛼 − 𝑒𝑖𝜃𝛼] = 𝜋
√1 − 𝛽2

sin [𝛼(𝜃)]
sin(𝜋𝛼)

= 𝜋
√1 − 𝛽2

sin {𝛼 arctan [√1−𝛽2

|𝛽| ]}
sin(𝜋𝛼) (9)
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𝛽 < −1 case

In this range of 𝛽 we will have 𝑧1,2 = 𝛽 ± √𝛽2 − 1, which are both negative real numbers. We
can write 𝐼 as

𝐼 = 𝜋𝑖
√𝛽2 − 1(1 − 𝑒𝑖2𝜋𝛼)

𝑒𝑖𝜋𝛼 [(|𝛽| − √𝛽2 − 1)
𝛼

− (|𝛽| + √𝛽2 − 1)
𝛼

]

=
𝜋 [(|𝛽| + √𝛽2 − 1)𝛼 − (|𝛽| − √𝛽2 − 1)𝛼]

2√𝛽2 − 1 sin(𝜋𝛼)
(10)

Verifying with Mathematica

The results can be verified with Mathematica. Find the code here.
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