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This is a comprehensive deep dive into Gaussian integrals, exploring multiple
techniques for their evaluation including polar coordinate transformations, com-
plex contour integration. We derive the fundamental normalization factor and
demonstrate how the central limit theorem makes Gaussian distributions ubiqui-
tous across statistics, physics, and machine learning. This is the art of evaluating
Gaussian integrals like a true mathematical boss.
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The Gaussian function

My strongest memory of the class is the very beginning, when he started, not with
some deep principle of nature, or some experiment, but with a review of Gaussian
integrals. Clearly, there was some calculating to be done.

—Joe Polchinski, on Richard Feynman’s quantum mechanics class[1].

Due to the central limit theorem, Gaussian functions show up everywhere[2]. One needs to
deal with its integrals in various forms. This is an extensive tutorial on Gaussian integrals so
that you can evaluate them like a boss! This post is inspired by the masterpiece book “The
Principles of Deep Learning Theory” from Robert at al [3], and I took the liberty of borrowing
some ideas from their work, including the quoted remarks from Polchinski.

Let us first show how a Gaussian distribution looks like.

𝒩𝜇,𝜎(𝑥) = 1√
2𝜋𝜎𝑒− (𝑥−𝜇)2

2𝜎2 , (1)

where 𝜇 is the mean value and 𝜎 is the variance.
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Assume you are on a beach, and you don’t remember the form of the Gaussian function.
What would you do in such a desperate situation? Normal distribution is symmetric around
its mean value. So we must have a (𝑥 − 𝜇)2 in the exponent. Note that you can never ever put
a parameter which has a dimension in the exponent. You can think of 𝑥 as length. (𝑥 − 𝜇)2

has unit Length2. Therefore you need to divide (𝑥 − 𝜇)2 by some parameter that has the unit
Length2, and that is 2𝜎2. The factor 2 is a convention. That fixes the exponent as − (𝑥−𝜇)2

2𝜎2 ,
where you need the negative sign so that the density function is normalizable. How about the
prefactor? Remember that normal distribution is a density, and we will soon integrate it over
the parameter 𝑥. Therefore, it needs to have a unit of Length−1 so that once you multiply
it with 𝑑𝑥 you get probability, which is a unitless number. So you need 1/𝜎 in front of the
exponential.

√
2𝜋 is for normalizing the distribution, which we will derive later. And that is

how you can remind yourself the form of the normal distribution.

The pesky error function

Whenever you define a probability density function, you need integrals of if with finite limits.
Unfortunately for the Gaussian function, the integral cannot be evaluated in terms of elemen-
tary functions. However, there is a dedicated function created just for that, which is defined
as follows:

erf(𝑥) ≡ 2√𝜋 ∫
𝑥

0
𝑑𝜏 𝑒−𝜏2 . (2)

The area under the Gaussian distribution between two arbitrary limits can be written as:

∫
𝑥2

𝑥1

𝑑𝑥𝒩𝜇,𝜎(𝑥) = 1√
2𝜋𝜎 ∫

𝑥2

𝑥1

𝑑𝑥𝑒− (𝑥−𝜇)2
2𝜎2 = 1√𝜋 ∫

𝑥2−𝜇√
2𝜎

𝑥1−𝜇√
2𝜎

𝑑𝜏𝑒−𝜏2

= 1√𝜋 ∫
0

𝑥1−𝜇√
2𝜎

𝑑𝜏𝑒−𝜏2 + 1√𝜋 ∫
𝑥2−𝜇√

2𝜎

0
𝑑𝜏𝑒−𝜏2

= 1
2erf (𝑥2 − 𝜇√

2𝜎
) − 1

2erf (𝑥1 − 𝜇√
2𝜎

) , (3)

and that is how we can compute the integral with finite limits. A special case of the integral
in Eq. 3 is realized when 𝑥1 → −∞, which gives the cumulative distribution function:

CDF(𝑥) = 1√
2𝜋𝜎 ∫

𝑥

−∞
𝑑𝜏𝑒− (𝜏−𝜇)2

2𝜎2 = 1
2 [1 + erf (𝑥 − 𝜇√

2𝜎
)] . (4)

erf(𝑥) is readily available in Python, R and Javascript. In Figure 1, we plot Gaussian proba-
bility density function (PDF) and cumulative distribution function (CDF).
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Figure 1: The plot shows the normal distribution PDF and CDF. Find the interactive version
here
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The central limit theorem

Gaussian function appears everywhere, including statistics, physics, and neural networks [3].
Why is that? It is because of the central limit theorem, which can be loosely defined as follows:
If you add up many random variables, their properly normalized sum converges toward a
normal distribution irrespective of the type of distribution of the original variables. That is a
very strong statement, and justifies the use of normal distribution if you think the end quantity
is the sum of many underlying contributors. In the special case of independent and identically
distribute random variables 𝑋𝑖 with 𝑖 = 1, 2, ⋯ 𝑛, the central limit theorem can be written as
follows:

1√𝑛𝜎
𝑛

∑
𝑖=0

(𝑋𝑖 − 𝜇) ∼ 𝒩(0, 1). (5)

The normalization factor

The first integral we will look at is the most basic one. In order to be a proper distribution
function, it has to be normalized. Therefore we need to compute the factor that appears in
front of the exponential in Eq. 1. We need to evaluate the following integral:

𝐼 ≡ ∫
∞

−∞
𝑑𝑥𝑒− (𝑥−𝜇)2

2𝜎2 . (6)

There are many different ways computing the integral in Eq. 6, and I will only discuss the
ones I like the most.

Squaring the integral to polarize it

Here is our integral to evaluate:

𝐼 = ∫
∞

−∞
𝑑𝑥𝑒− (𝑥−𝜇)2

2𝜎2 =
√

2𝜎 ∫
∞

−∞
𝑑𝑥𝑒−𝑥2 . (7)

We will do a neat trick and square the integral:

𝐼2 = 2𝜎2 ∫
∞

−∞
𝑑𝑥𝑒−𝑥2 ∫

∞

−∞
𝑑𝑦𝑒−𝑦2 = 2𝜎2 ∫

∞

−∞
∫

∞

−∞
𝑑𝑥𝑑𝑦𝑒−(𝑥2+𝑦2). (8)

It doesn’t look like we made progress, but we notice that 𝑑𝑥𝑑𝑦 is the differential area, and
switch to polar coordinates ,as in Figure 2, to see if that helps.
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Figure 2: The integral over 𝑑𝐴 can be evaluated in Cartesian coordiates with 𝑑𝐴 = 𝑑𝑥𝑑𝑦 or
in polar coordinates 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜙.

In the polar coordinates we have 𝑥 = 𝑟 cos 𝜙, 𝑦 = 𝑟 sin 𝜙, and 𝑑𝐴 = 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜙.

𝐼2 = ∫
∞

−∞
∫

∞

−∞
𝑑𝑥𝑑𝑦𝑒−(𝑥2+𝑦2) = ∫

∞

0
𝑒−𝑟2𝑟𝑑𝑟 ∫

2𝜋

0
𝑑𝜙 = 𝜋 (9)

Therefore the integral in Eq. 7 has the value

𝐼 = ∫
∞

−∞
𝑑𝑥𝑒− (𝑥−𝜇)2

2𝜎2 =
√

2𝜋𝜎, (10)

which is the inverse of the coefficient in the Gaussian distribution in Eq. 1 ensuring that it is
properly normalized to 1.

Complex contour integral, like a boss!

It is possible to compute the Gaussian integral using complex calculus. As 𝑒−𝑥2 has no zeros
itself, we consider a function 𝑒−𝑥2

𝑔(𝑥) , and upgrade the real parameter 𝑥 to a complex parameter

𝑧, and integrate 𝑒−𝑧2

𝑔(𝑧) in on a carefully built contour in Figure 3.

The trick is to combine two pieces of complex line integrals to give what we want at the end.
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Figure 3: Animated complex contour integration. Find the interactive version here

Figure 3 shows the complex contour integration technique for evaluating Gaussian integrals.

The mean, sigma, and all that

𝒩𝜇,𝜎(𝑥) has a parameter 𝜇 which is the value around which the distribution is symmetric,
see Figure 1. We can show that the expected value of a random number 𝑋 ∼ 𝒩𝜇,𝜎 is 𝜇 by
evaluating the following integral:

𝔼 [𝑥] ≡ ∫
∞

−∞
𝑑𝑥 𝑥𝒩𝜇,𝜎(𝑥) = 1√

2𝜋𝜎 ∫
∞

−∞
𝑑𝑥 𝑥𝑒− (𝑥−𝜇)2

2𝜎2 = 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 (𝑥 − 𝜇 + 𝜇)𝑒− (𝑥−𝜇)2

2𝜎2

=
���������������:0

1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 (𝑥 − 𝜇)𝑒− (𝑥−𝜇)2

2𝜎2 + 𝜇 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥𝑒− (𝑥−𝜇)2

2𝜎2 = 𝜇, (11)

where the first integral vanishes since the integrand is odd.

In order to compute the variance, we have to figure out how to compute the expected value of
(𝑥 − 𝜇)2. We can be a bit more generous and compute the expected value of (𝑥 − 𝜇)2𝑛 where
𝑛 is a positive integer. Note that odd powers of (𝑥 − 𝜇) will have 0 as their expected value as
they are antisymmetric.
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𝔼 [(𝑥 − 𝜇)2𝑛] ≡ ∫
∞

−∞
𝑑𝑥 (𝑥 − 𝜇)2𝑛𝒩𝜇,𝜎(𝑥) = 1√

2𝜋𝜎 ∫
∞

−∞
𝑑𝑥 (𝑥 − 𝜇)2𝑛𝑒− (𝑥−𝜇)2

2𝜎2

= 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 (𝑥 − 𝜇)2𝑛𝑒−𝛼(𝑥−𝜇)2 ∣

𝛼= 1
2𝜎2

= 1√
2𝜋𝜎(−1)𝑛 𝑑𝑛

𝑑𝛼𝑛 ∫
∞

−∞
𝑑𝑥 𝑒−𝛼(𝑥−𝜇)2 ∣

𝛼= 1
2𝜎2

= 1√
2𝜋𝜎(−1)𝑛 𝑑𝑛

𝑑𝛼𝑛
√𝜋𝛼− 1

2 ∣
𝛼= 1

2𝜎2

= 1√
2𝜎

1
2 × 3

2 × ⋯ × 2𝑛 − 1
2 𝛼− 2𝑛+1

2 ∣
𝛼= 1

2𝜎2

= 1 × 3 × 5 × ⋯ × 2𝑛 − 1
2 𝜎2𝑛 = 𝜎2𝑛(2𝑛 − 1)!!, (12)

where the double factorial term is defined as (2𝑛 − 1)!! ≡ (2𝑛 − 1)(2𝑛 − 3) ⋯ 1 = (2𝑛)!
2𝑛𝑛! .

There is another technique which is known as Feynman’s method. It is similar to what we
just did: we differentiated the integrand with respect to the parameter we called 𝛼. However,
it was kind of an obvious thing to do. Feynman’s method takes this one step further. You
insert a parameter by hand and poke that parameter before you set it to the appropriate
value(typically 0 or 1) at the end. It is an incredibly powerful technique and it is work
repeating the calculations to illustrate how it works. Let’s consider the following integral:

𝔼 [𝑒𝐽(𝑥−𝜇)] = ∫
∞

−∞
𝑑𝑥 𝑒𝐽(𝑥−𝜇)𝒩𝜇,𝜎(𝑥) = 1√

2𝜋𝜎 ∫
∞

−∞
𝑑𝑥 𝑒− (𝑥−𝜇)2

2𝜎2 +𝐽(𝑥−𝜇)

= 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 𝑒− (𝑥−𝜇)2−2𝜎2𝐽(𝑥−𝜇)

2𝜎2

= 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 𝑒− [𝑥−𝜇−𝜎2𝐽(𝑥−𝜇)]2

2𝜎2 + 𝐽2𝜎2
2 = 𝑒 𝐽2𝜎2

2 . (13)

Note that we can now drop in the term (𝑥 − 𝜇)𝑛 by differentiating the integral with respect
to 𝐽 .

𝔼 [(𝑥 − 𝜇)𝑛] = [( 𝑑
𝑑𝐽 )

2𝑛
𝔼 [𝑒𝐽(𝑥−𝜇)]]

𝐽=0
= [( 𝑑

𝑑𝐽 )
2𝑛

∫
∞

−∞
𝑑𝑥 𝑒𝐽(𝑥−𝜇)𝒩𝜇,𝜎(𝑥)]

𝐽=0

= 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝑥 (𝑥 − 𝜇)2𝑛𝑒− (𝑥−𝜇)2

2𝜎2 = [( 𝑑
𝑑𝐽 )

2𝑛
𝑒 𝐽2𝜎2

2 ]
𝐽=0

= [( 𝑑
𝑑𝐽 )

2𝑛
{

∞
∑
𝑖=0

1
𝑖! (𝜎2

2 )
𝑖
𝐽2𝑖}]

𝐽=0
= 𝜎2𝑛 (2𝑛)!

2𝑛𝑛!
= 𝜎2𝑛(2𝑛 − 1)!!, (14)
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where the only contribution from the summation comes from 𝑖 = 𝑛 since 𝐽 is set to zero after
differentiation.

The Matrix representation

There are problems involving Gaussians with multiple variables, and ff the variables are not
connected, one can simply separate the integrals to evaluate them individually. For example
a Gaussian with two variables will be of the form 𝑒𝑥𝑝 {−(𝑥 − 𝜇𝑥)2/(2𝜎2

𝑥) − (𝑦 − 𝜇𝑦)2/(2𝜎2
𝑦)}

which can be separated as 𝑒𝑥𝑝 {−(𝑥 − 𝜇𝑥)2/(2𝜎2
𝑥)}×𝑒𝑥𝑝 {−(𝑦 − 𝜇𝑦)2/(2𝜎2

𝑦)}, and the integrals
simply decouple. However, if there are cross terms of the form 𝑥 𝑦, we need to come up with
a new set of coordinates to eliminate the cross term. In the jargon of linear algebra, this is
referred to as diagonalization. In order to keep the notation simple, let us now upgrade the
parameter 𝑥 to a vector x = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁)𝑇 , and consider the following integral:

𝐼 = ∫
∞

−∞
𝑑𝑁x𝑒−x𝑇 𝑀x, (15)

where 𝑀 is an 𝑁 -by-𝑁 symmetric positive definite matrix, which is not necessarily a diagonal
one. However we can rotate our vector x with a rotation matrix 𝑅, i.e., y = 𝑀x or equivalently
x = 𝑀𝑇 y, such that the rotation operation diagonalizes the matrix 𝑀 . It works like below:

x𝑇 𝑀x = y𝑇 𝑅𝑀𝑅𝑇 y ≡ y𝑇 Λy, (16)

where
Λ = 𝑅𝑀𝑅𝑇 (17)

is a diagonal matrix 1
𝜆𝑖

𝛿𝑖𝑗. Since rotation matrices do not change the volume, the integral
measure stays the same. Therefore the integrals decouple in the y space:

𝐼 = ∫
∞

−∞
𝑑𝑁x𝑒− 1

2 x𝑇 𝑀x = ∫
∞

−∞
𝑑𝑁y𝑒− 1

2 y𝑇 Λy = ∫
∞

−∞
𝑑𝑁y𝑒− ∑𝑖,𝑗

1
2𝜆𝑖

y𝑖𝛿𝑖𝑗y𝑖 = ∫
∞

−∞
𝑑𝑁y𝑒− ∑𝑖

𝑦2
𝑖

2𝜆𝑖

= ∏
𝑖

∫
∞

−∞
𝑑𝑦𝑖𝑒

𝑦2
𝑖

2𝜆𝑖 = ∏
𝑖

√2𝜋𝜆𝑖 = √∏
𝑖

(2𝜋𝜆𝑖) = √|2𝜋Λ−1| = √|2𝜋𝑀−1|, (18)

where we used the fact that determinant of a matrix, |𝑀|, is the multiplication of its eigenvalues.
Putting the reciprocal of this factor infront gives the normalized Gaussian distribution with
multiple variables:

𝒩𝜇𝜇𝜇,𝑀(x) = 1
√|2𝜋𝑀−1|

𝑒− 1
2 (x−𝜇𝜇𝜇)𝑇 𝑀(x−𝜇𝜇𝜇), (19)

where we introduced the mean value vector 𝜇𝜇𝜇 ≡ (𝜇1, 𝜇2, ⋯ , 𝜇𝑁)
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The Wick contraction

Computation of the moments is very similar to the case of single variable Gaussian. We
introduce J vector and couple it to x − 𝜇𝜇𝜇. The exponent becomes:

−1
2(x−𝜇𝜇𝜇)𝑇 𝑀(x−𝜇𝜇𝜇)+J𝑇 (x−𝜇𝜇𝜇) = −1

2 (x − 𝜇𝜇𝜇 − (𝑀−1)𝑇 J)𝑇 𝑀 (x − 𝜇𝜇𝜇 − 𝑀−1J)+ 1
2J𝑇 𝑀−1J.

(20)
Similar to what we did in Eq. 13, we consider the following integral:

𝔼 [𝑒J𝑇 (x−𝜇𝜇𝜇)] = ∫
∞

−∞
𝑑𝑁x 𝑒J(x−𝜇𝜇𝜇)𝒩𝜇𝜇𝜇,𝑀(x) = 1

√|2𝜋𝑀−1|
∫

∞

−∞
𝑑𝑁x 𝑒J(x−𝜇𝜇𝜇)𝒩𝜇𝜇𝜇,𝑀(x)

= 1
√|2𝜋𝑀−1|

∫
∞

−∞
𝑑𝑁x 𝑒− 1

2 (x−𝜇𝜇𝜇−(𝑀−1)𝑇 J)𝑇 𝑀(x−𝜇𝜇𝜇−𝑀−1J)+ 1
2 J𝑇 𝑀−1J

= 𝑒 1
2 J𝑇 𝑀−1J = 𝑒 1

2 ∑𝑘,𝑙 𝐽𝑘𝑀−1
𝑘𝑙 𝐽𝑙 . (21)

Let us first shift the variables by their mean values to simplify the notation a bit: z = x − 𝜇𝜇𝜇.
In the z coordinates, we can compute the moments easily as follows:

𝔼 [𝑧𝑖1
𝑧𝑖2

⋯ 𝑧𝑖2𝑛
] = [ 𝑑

𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

⋯ 𝑑
𝑑𝐽𝑖2𝑛

𝔼 [𝑒Jz]]
J=0

= [ 𝑑
𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

⋯ 𝑑
𝑑𝐽𝑖2𝑛

∫
∞

−∞
𝑑𝑁z 𝑒Jz𝒩0,𝑀]

J=0

= [ 𝑑
𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

⋯ 𝑑
𝑑𝐽𝑖2𝑛

𝑒 1
2 J𝑇 𝑀−1J]

J=0

= ⎡⎢
⎣

𝑑
𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

⋯ 𝑑
𝑑𝐽𝑖2𝑛

⎧{
⎨{⎩

∞
∑
𝑖=0

1
𝑖! (1

2 ∑
𝑘,𝑙

𝐽𝑘𝑀−1
𝑘𝑙 𝐽𝑙)

𝑖⎫}
⎬}⎭

⎤⎥
⎦𝐽=0

= 1
2𝑛𝑛!

𝑑
𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

⋯ 𝑑
𝑑𝐽𝑖2𝑛

(∑
𝑘,𝑙

𝐽𝑘𝑀−1
𝑘𝑙 𝐽𝑙)

𝑛

. (22)

Note that the derivative operator will isolate the corresponding indices of the matrix 𝑀−1.
For example:

𝔼 [𝑧𝑖1
𝑧𝑖2

] = 1
2

𝑑
𝑑𝐽𝑖1

𝑑
𝑑𝐽𝑖2

∑
𝑘,𝑙

𝐽𝑘𝑀−1
𝑘𝑙 𝐽𝑙 = 𝑀−1

𝑖1𝑖2
, (23)

where we got a factor of 2 from the differentiation which canceled the prefactor. In fact, this
cancellation will hold for any 𝑛. Therefore we can write the expectation value as summation
of all pairs coupled with the matrix 𝑀−1:
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𝔼 [𝑧𝑖1
𝑧𝑖2

⋯ 𝑧𝑖2𝑛
] = ∑

pairs
𝑀−1

𝑝1
1𝑝1

2
𝑀−1

𝑝2
1𝑝2

2
⋯ 𝑀−1

𝑝𝑛
1 𝑝𝑛

2
(24)

where 𝑝𝑘
1 and 𝑝𝑘

2 for a given 𝑘 represent two indices paired together, and the sum is over all
such possible pairs. For example, for 𝑛 = 2 we get:

𝔼 [𝑧𝑖1
𝑧𝑖2

𝑧𝑖3
𝑧𝑖4

] = ∑
pairs

𝑀−1
𝑝1

1𝑝1
2
𝑀−1

𝑝2
1𝑝2

2
= 𝑀−1

𝑖1𝑖2
𝑀−1

𝑖3𝑖4
+ 𝑀−1

𝑖1𝑖3
𝑀−1

𝑖2𝑖4
+ 𝑀−1

𝑖1𝑖4
𝑀−1

𝑖2𝑖3
. (25)

The formula in 24 is the Wick’s theorem and it appears frequently in quantum field theory.

[1] J. Polchinski, “Memories of a theoretical physicist.” 2006 [Online]. Available: https:
//arxiv.org/abs/1708.09093

[2] “The probability integral.” [Online]. Available: https://www.york.ac.uk/depts/maths/
histstat/normal_history.pdf. [Accessed: 24-Jan-2022]

[3] D. A. Roberts, S. Yaida, and B. Hanin, “The Principles of Deep Learning Theory,” Jun.
2021 [Online]. Available: https://arxiv.org/abs/2106.10165

10

https://arxiv.org/abs/1708.09093
https://arxiv.org/abs/1708.09093
https://www.york.ac.uk/depts/maths/histstat/normal_history.pdf
https://www.york.ac.uk/depts/maths/histstat/normal_history.pdf
https://arxiv.org/abs/2106.10165

	The Gaussian function
	The pesky error function
	The central limit theorem
	The normalization factor

	Squaring the integral to polarize it
	Complex contour integral, like a boss!
	The mean, sigma, and all that
	The Matrix representation
	The Wick contraction


