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Integral of the month: [ dx
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Three different ways of evaluating this lovely integral! We explore complex con-
tour integration using the upper semicircular contour to avoid the singularity at
the origin. The parametric Laplace transform method introduces a parameter and
manipulates it to simplify the integral evaluation. Finally, we demonstrate the
direct Laplace transform approach, showing how to create the necessary 1/x term
in the integrand.
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sin

We want to compute the integral I = [ O:o dz>* in various ways.

A complex contour integration

As it is typically done, we first upgrade real valued parameter x to a complex number z and
then construct the contour in Figure 1.
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Figure 1: The complex contour in which the singularity at the origin is avoided by bending the
curve around it. It is closed from above to make sure exponential term, e*?, vanishes

as R — oo.
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On the circle of radius €, z = ge’® where 6 € [0,7]. And on the large circle z = Re'® where
¢ € [0, 7]. We can easily evaluate the following integral (in the limit ¢ — 0 and R — 00):
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Note that the integral over the large circle vanishes as R — oo since e
Therefore, by explicit evaluation, we see that I, = f dm— + im. But, from the theory of
residues, we know that the closed loop integral of a function is 0 if the contour does not enclose
any poles. Therefore
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and if we take the imaginary parts of both sides, we get
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Side note: we evaluated the integral over the inner half circle explicitly. We could also see that
it would give im by observing that it is half of a circle that would have enclosed the singularity
at the origin. Integral over the full circle would give 27, and the integral over the upper-half
gives im.

Parametric Laplace transform

One of my favorite tricks in integration is to introduce a parameter in the integrand and
manipulate it to simplify the integral. Let us insert an o parameter in sin:
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Let us apply a Laplace transform with respect to a to be followed by the inverse Laplace
transform
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Direct Laplace transform
Here is a reminder on the definition of the Laplace transform:
Fs)= €1l = [ doeso) (6)
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From the definition, we can see that we can create a % term in the integrand if we simply
integrate left side from s to oo:
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Therefore, if we have an expression of the form f(x)/z, we can transform it as | d5F(3). In

our case f(x) =sinz and F(s) = H% Using the property above we get
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Note that I, at s = 0 is half of the integral we are looking for: | O:o dz¥2t = 3 fooo da 32z,
Doubling the result at s = 0 yields:

I =2I,=m—2arctan(0) =7 9)

There you have it, three ways of evaluating this lovely integral.
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