
Integral of the month: ∫ 𝑑𝑥
𝑥𝑛+1

2025-05-04

This article presents three distinct methods for evaluating the integral ∫∞
0

𝑑𝑥
𝑥𝑛+1

using complex analysis and residue calculus. We explore a clever pizza-slice contour
approach, a traditional semicircular contour method, and an elegant keyhole con-
tour technique involving branch cuts. Each method demonstrates different aspects
of contour integration theory, making this a valuable exercise for students learning
complex analysis and showcasing the versatility of residue theory in solving real
integrals.
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Let’s be extravagant and solve the problem with three different methods.

A sneaky method

We need to decide on the complex contour. It needs to include the real line from 0 to ∞, and
we need to come back to 0 to close the loop. Since we have 𝑥𝑛 term, if we return to the origin
at an angle of 2𝜋

𝑛 , i.e., 𝑧 = 𝑟𝑒 2𝜋𝑖
𝑛 , the 𝑛th power will remove the phase and will leave behind

𝑟𝑛. So, we can try the contour in Figure 1.
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Figure 1: Pizza slice contour encloses only one pole.

∮ 𝑓(𝑧)𝑑𝑧 = ∫
𝛾0

𝑑𝑧𝑓(𝑧) + ∫
𝛾𝑅

𝑑𝑧𝑓(𝑧) + ∫
𝛾1

𝑑𝑧𝑓(𝑧) = 2𝜋𝑖Res(𝑓, 𝑧1)

= ∫
𝑅

0

𝑑𝑥
𝑥𝑛 + 1 + 𝑖 ∫

2𝜋
𝑛

0
𝑑𝜃𝑒𝑖𝜃 𝑅

𝑅𝑛𝑒𝑖𝑛𝜃 + 1 + 𝑒𝑖 2𝜋
𝑛 ∫

0

𝑅

𝑑𝑥
𝑥𝑛 + 1

= (1 − 𝑒𝑖 2𝜋
𝑛 ) ∫

𝑅

0

𝑑𝑥
𝑥𝑛 + 1 + 𝑖 ∫

2𝜋
𝑛

0
𝑑𝜃𝑒𝑖𝜃 𝑅

𝑅𝑛𝑒𝑖𝑛𝜃 + 1. (1)

It is easy to show that the angle integral will vanish as 𝑅 → ∞. This is because ∣ 𝑅
𝑅𝑛𝑒𝑖𝑛𝜃+1 ∣ →

1
𝑅𝑛−1 → 0 for large 𝑅. We can simplify the factor in front of the integral as follows:

(1 − 𝑒𝑖 2𝜋
𝑛 ) = 𝑒𝑖 𝜋

𝑛 (𝑒−𝑖 𝜋
𝑛 − 𝑒𝑖 𝜋

𝑛 ) = −2𝑖𝑒𝑖 𝜋
𝑛 sin(𝜋

𝑛). (2)

Putting it back into Eq. 1 gives

∫
∞

0

𝑑𝑥
𝑥𝑛 + 1 = −𝜋Res(𝑓, 𝑧1)

𝑒𝑖 𝜋
𝑛 sin( 𝜋

𝑛) . (3)

All there is left is to compute the residue of 𝑓(𝑧) at 𝑧 = 𝑧1 = 𝑒 𝑖𝜋
𝑛 :

Res(𝑓, 𝑧1) = lim
𝑧→𝑧1

𝑧 − 𝑧1
𝑧𝑛 + 1 = lim

𝑧→𝑧1

1
𝑑
𝑑𝑧(𝑧𝑛 + 1) = 1

𝑛𝑧𝑛−1
1

= 𝑒 −𝑖𝜋(𝑛−1)
𝑛

𝑛 , (4)

where we used L’Hôpital’s rule. Inserting the result into Eq. 3 we get

∫
∞

0

𝑑𝑥
𝑥𝑛 + 1 = − 𝜋𝑒 −𝑖𝜋(𝑛−1)

𝑛

𝑒𝑖 𝜋
𝑛 𝑛 sin( 𝜋

𝑛) = 𝜋
𝑛 sin( 𝜋

𝑛) , (5)

which is the final answer.
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A typical method

When 𝑛 is even, we can extend the lower limit of the integral from 0 to −∞ and divide the
result by 2. We can try the contour in Figure 2.
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Figure 2: Pizza slice contour encloses all the poles on the upper half.

It may look like we got ourselves into a lot of work as we will need to compute all the residues for
the poles in the upper half and add them up. Maybe, it won’t be as hard as it looks. We do this
for fun, anyways. One trick we will use is this: since 𝑧𝑛

𝑗 + 1 = 0, we have 𝑧𝑛−1
𝑗 = 𝑧𝑛

𝑗
𝑧𝑗

= − 1
𝑧𝑗

𝐼 = 𝑖𝜋
𝑛
2 −1
∑
𝑗=0

Res(𝑓, 𝑧𝑗) = −𝑖𝜋
𝑛
2 −1
∑
𝑗=0

1
𝑛𝑧𝑛−1

𝑗
= −𝑖𝜋

𝑛
2 −1
∑
𝑗=0

𝑧𝑗 = −𝑖𝑒 𝜋𝑖
𝑛

𝜋
𝑛

𝑛
2 −1
∑
𝑗=0

𝑒 2𝜋𝑖𝑗
𝑛 = −𝑖𝑒 𝜋𝑖

𝑛
𝜋
𝑛

1 − 𝑒 2𝜋𝑖𝑛/2
𝑛

1 − 𝑒 2𝜋𝑖
𝑛

= 𝜋
𝑛

2
𝑖𝑒 −𝜋𝑖

𝑛 (1 − 𝑒 2𝜋𝑖
𝑛 )

= 𝜋
𝑛

2
𝑖(𝑒 −𝜋𝑖

𝑛 − 𝑒 𝜋𝑖
𝑛 )

= 𝜋
𝑛

2
2𝑠𝑖𝑛( 𝜋

𝑛) = 𝜋
𝑛 sin( 𝜋

𝑛) (6)

A fancy method

Do you dislike branch cuts? Maybe, just maybe, you just don’t understand and appreciate
them. They usually appear naturally if the functions involve fractional powers or logarithms.
Let’s introduce a logarithm into our problem by hand

̃𝑓(𝑧) ≡ 𝑙𝑛(𝑧)
𝑧𝑛 + 1, (7)

and try to evaluate this contour integral:

𝐼𝐶 = ∮
𝐶

𝑑𝑧 ̃𝑓(𝑧). (8)

We need to introduce a branch cut for the logarithm and promise not to cross it. Let’s take it
to be the positive real axis and define the contour as in Figure 3.
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Figure 3: Key-hole contour to evaluate the integral. The dashed lines show the possible posi-
tions of the two poles.

We can now evaluate the integral

𝐼𝐶 = ∮
𝐶

𝑑𝑧 ̃𝑓(𝑧) = 2𝜋𝑖
𝑛−1
∑
𝑗=0

Res ( ̃𝑓(𝑧), 𝑧𝑗) = 2𝜋𝑖
𝑛−1
∑
𝑗=0

𝑙𝑛(𝑧𝑗)
𝑛𝑧𝑛−1

𝑗
= −2𝜋𝑖

𝑛−1
∑
𝑗=0

𝑧𝑗𝑙𝑛(𝑧𝑗)
𝑛 = −2𝜋2

𝑛2

𝑛−1
∑
𝑗=0

(1 + 2𝑗)𝑒 𝜋𝑖(1+2𝑗)
𝑛

= −2𝜋2

𝑛2 𝑒 𝜋𝑖
𝑛 (

𝑛−1
∑
𝑗=0

𝑒 2𝜋𝑖𝑗
𝑛 + 2

𝑛−1
∑
𝑗=0

𝑗𝑒 2𝜋𝑖𝑗
𝑛 ) = 4𝜋2

𝑛 𝑒 𝜋𝑖
𝑛

𝑛−1
∑
𝑗=0

𝑗𝑒 2𝜋𝑖𝑗
𝑛 = −4𝜋2

𝑛2 𝑒 𝜋𝑖
𝑛

𝑛
2𝜋𝑖 [ 𝑑

𝑑𝛼 (
𝑛−1
∑
𝑗=0

𝑒 2𝜋𝛼𝑖𝑗
𝑛 )]

𝛼=1

= −4𝜋2

𝑛2 𝑒 𝜋𝑖
𝑛

𝑛
2𝜋𝑖 [ 𝑑

𝑑𝛼 (1 − 𝑒2𝜋𝑖𝛼

1 − 𝑒 2𝜋𝛼𝑖
𝑛

)]
𝛼=1

= −4𝜋2

𝑛2 𝑒 𝜋𝑖
𝑛

𝑛
2𝜋𝑖

−2𝜋𝑖
1 − 𝑒 2𝜋𝑖

𝑛
= − 2𝑖𝜋2

𝑛 sin( 𝜋
𝑛) . (9)

It is not obvious yet how this contour integral ties to our original one, 𝐼 . It will be clearer as
we chop the integral into pieces as follows:

∮ ̃𝑓(𝑧)𝑑𝑧 = ∫
𝐶1

𝑑𝑧 ̃𝑓(𝑧) + ∫
𝐶𝜖

𝑑𝑧 ̃𝑓(𝑧) + ∫
𝐶2

𝑑𝑧 ̃𝑓(𝑧) + ∫
𝐶𝑅

𝑑𝑧 ̃𝑓(𝑧). (10)

There is really nothing exciting for ∫𝐶𝑅
𝑑𝑧 ̃𝑓(𝑧) since it will be bounded by 2𝜋 𝑙𝑛𝑅

𝑅 . It will vanish
as 𝑅 → ∞. The integral over the small circle ∫𝐶𝜖

𝑑𝑧 ̃𝑓(𝑧) will be bounded by 𝜖 𝑙𝑛(𝜖), hence it
will too vanish as 𝜖 → 0. The magic happens with the integrals over the segments 𝐶1,2. On 𝐶1,
𝑧 = 𝑥𝑒𝑖𝜖, i.e., it is hovering just above the real axis. On 𝐶2, 𝑧 = 𝑥𝑒𝑖(2𝜋−𝜖), i.e., it is hovering
just below the real axis. Note the 2𝜋 shift in the phase, which came from our promise of not
crossing the branch cut. Putting this inside 𝑙𝑛 will make the big difference.

∮ ̃𝑓(𝑧)𝑑𝑧 = lim
𝜖→0

∫
∞

0
𝑑𝑥𝑙𝑛(𝑥𝑒𝑖𝜖)

𝑥𝑛 + 1 + lim
𝜖→0

∫
0

∞
𝑑𝑥𝑙𝑛(𝑥𝑒𝑖(2𝜋−𝜖))

𝑥𝑛 + 1 = ∫
∞

0
𝑑𝑥 𝑙𝑛(𝑥)

𝑥𝑛 + 1 − ∫
∞

0
𝑑𝑥𝑙𝑛(𝑥) + 2𝜋𝑖

𝑥𝑛 + 1

= −2𝜋𝑖 ∫
∞

0

𝑑𝑥
𝑥𝑛 + 1 = − 2𝑖𝜋2

𝑛 sin( 𝜋
𝑛) , (11)

4



from which we get

∫
∞

0

𝑑𝑥
𝑥𝑛 + 1 = 𝜋

𝑛 sin( 𝜋
𝑛) . (12)

There you have it, three ways of evaluating this lovely integral.
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