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This work presents a theoretical analysis of non-degenerate parametric amplifiers,
which achieve signal amplification through time-varying reactive elements without
introducing thermal noise. We derive the fundamental current-voltage relationships
for parametric circuits and systematically eliminate variables to obtain the signal
admittance expression. This result demonstrates how parametric coupling creates
effective negative conductance proportional to pump power, enabling amplification
when the negative conductance exceeds the circuit’s passive losses.
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Today we will be discussing the non-degenerate parametric amplifier. I will be borrowing the
derivation from [1], [2], and [3].

Devices with nonlinear susceptance can be used to create parametric amplifiers and oscillators.
A well known example is the reverse-biased pn junction, which has nonlinear charge-voltage
characteristics arising from voltage-dependent capacitance. Such a nonlinear behavior results
in frequency mixing among the following components:

• signal,
• idler,
• pump.

The energy is transferred from the pump wave to the weaker signal and idler waves. This is
the operating principle of the parametric amplifier.

Circuit equivalent of a parametric amplifier is shown in Figure 1 or in its alternative form in
Figure 2.
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Figure 1: Non-degenerate parametric amplifier[2]. Hover over the orange circuit elements to
see more information.
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Figure 2: An alternative representation of the circuit.

Nonlinear Capacitance

Consider a capacitor which has a voltage-dependent capacitance. Such dependence naturally
arises from the pn junction diode.

𝒞 = 𝐶(1 + 𝛼𝑣), (1)
where 𝐶 is the capacitance at zero voltage and 𝛼 represents the linear dependence of the
capacitance on the voltage. The charge on the capacitor is then

𝑞(𝑡) = 𝐶 (1 + 𝛼𝑣(𝑡)) 𝑣(𝑡) = 𝐶𝑣(𝑡) + 𝑎𝑣2(𝑡), (2)
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where 𝑎 = 𝛼𝐶. The current through the capacitor is

𝑖(𝑡) = 𝑑𝑞(𝑡)
𝑑𝑡 = 𝐶 𝑑𝑣(𝑡)

𝑑𝑡 + 2𝑎𝑣(𝑡)𝑑𝑣(𝑡)
𝑑𝑡 . (3)

We will assign the angular frequencies 𝜔1, 𝜔2, and 𝜔3 for the signal, idler and pump waves,
respectively. In Figure 1 we have chosen the sign of the currents such that the total voltage
across the nonlinear capacitance is the sum of the voltages across the signal, idler and pump
circuits. The voltage across the nonlinear capacitor is given by

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) (4)
= 𝑉1 cos(𝜔1𝑡 + 𝜙1) + 𝑉2 cos(𝜔2𝑡 + 𝜙2) + 𝑉3 cos(𝜔3𝑡 + 𝜙3) (5)

The relations between 𝜔’s are easier to see in the alternative form of the circuit in Figure 2.
Imagine that the idler circuit is disconnected. The capacitor will have a tank circuit on the left
with the resonant frequency 𝜔1 and the signal circuit will have a tank circuit on the right with
the resonant frequency 𝜔3. The idler circuit will be tuned to beat at the difference frequency
𝜔2 = 𝜔3 − 𝜔1, or equivalently:

𝜔3 = 𝜔1 + 𝜔2 (6)

Now let’s define the individual frequencies of the signals. It is done with the typical trick of
disabling all but one of the voltage/current sources. One other ingredient is the observation
that a parallel 𝐿−𝐶 tank circuit becomes a short circuit at frequencies far separated from the
resonant frequency. As we look from the signal side into the circuit in Figure 1 at a frequency
of 𝜔1, the idler and pump circuits become short circuits making 𝐶 and 𝐶1 appear in parallel.
The same argument applies to the idler side and the pump side of the circuit.

Therefore the angular frequencies in Eq. 5 satisfy

𝜔𝑘 = 1
√𝐿𝑘(𝐶𝑘 + 𝐶)

, (7)

where 𝑘 = 1, 2, 3.

Current-Voltage Relations

Now we take the voltage expression Eq. 5 and substitute it in Eq. 3 and reorganize the
terms:
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𝑖(𝑡) = −𝜔1𝐶𝑉1 sin(𝜔1𝑡 + 𝜙1) − 𝜔1𝑎𝑉2𝑉3 sin(𝜔1𝑡 + 𝜙3 − 𝜙2)
−𝜔2𝐶𝑉2 sin(𝜔2𝑡 + 𝜙2) − 𝜔2𝑎𝑉1𝑉3 sin(𝜔2𝑡 + 𝜙3 − 𝜙1)
−𝜔3𝐶𝑉3 sin(𝜔3𝑡 + 𝜙3) − 𝜔3𝑎𝑉1𝑉2 sin(𝜔3𝑡 + 𝜙1 + 𝜙2). (8)

Let’s label the terms in the above equation as follows:

𝑖1(𝑡) = −𝜔1𝐶𝑉1 sin(𝜔1𝑡 + 𝜙1) − 𝜔1𝑎𝑉2𝑉3 sin(𝜔1𝑡 + 𝜙3 − 𝜙2) (9)

𝑖2(𝑡) = −𝜔2𝐶𝑉2 sin(𝜔2𝑡 + 𝜙2) − 𝜔2𝑎𝑉1𝑉3 sin(𝜔2𝑡 + 𝜙3 − 𝜙1) (10)

𝑖3(𝑡) = −𝜔3𝐶𝑉3 sin(𝜔3𝑡 + 𝜙3) − 𝜔3𝑎𝑉1𝑉2 sin(𝜔3𝑡 + 𝜙1 + 𝜙2) (11)

Equations 9–11 combine to give the total current:

𝑖(𝑡) = 𝑖1(𝑡) + 𝑖2(𝑡) + 𝑖3(𝑡) (12)

We want to convert Eqs. 9–11 to the form of the current-voltage relations using the components
of the voltage in Eq. 5. We will use the following trigonometric identity:

sin(𝜔1𝑡 + 𝜙3 − 𝜙2) = sin(𝜔1𝑡 + 𝜙1 + 𝜙3 − 𝜙2 − 𝜙1)
= sin(𝜔1𝑡 + 𝜙1) cos(𝜙3 − 𝜙2 − 𝜙1) + cos(𝜔1𝑡 + 𝜙1) sin(𝜙3 − 𝜙2 − 𝜙1)
= 1

𝑉1𝜔1
[ ̇𝑣1(𝑡) cos(𝜙3 − 𝜙2 − 𝜙1) + 𝜔1𝑣1(𝑡) sin(𝜙3 − 𝜙2 − 𝜙1)] (13)

This conversion gives:

𝑖1(𝑡) = 𝐶 ̇𝑣1(𝑡) + 𝑎𝑉1𝑉3
𝑉1

[cos(𝜙3 − 𝜙2 − 𝜙1) ̇𝑣1(𝑡) − 𝜔1𝑣1(𝑡) sin(𝜙3 − 𝜙2 − 𝜙1)] (14)

𝑖2(𝑡) = 𝐶 ̇𝑣2(𝑡) + 𝑎𝑉3
𝑉2

[cos(𝜙3 − 𝜙2 − 𝜙1) ̇𝑣2(𝑡) − 𝜔2𝑣2(𝑡) sin(𝜙3 − 𝜙2 − 𝜙1)] (15)

𝑖3(𝑡) = 𝐶 ̇𝑣3(𝑡) + 𝑎𝑉1𝑉2
𝑉3

[cos(𝜙3 − 𝜙2 − 𝜙1) ̇𝑣3(𝑡) + 𝜔3𝑣3(𝑡) sin(𝜙3 − 𝜙2 − 𝜙1)] (16)
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Admittance

Moving to the frequency domain, Eqs. 14–16, we get the admittances 𝑌𝑘 (k = 1,2,3) as we
look into the circuit from point 𝐴1 − 𝐴2, 𝐴2 − 𝐵2, and 𝐵1 − 𝐵2, respectively:

𝑌1 = 𝐼1(𝑖𝜔)
𝑉1(𝑖𝜔) = 𝑖𝜔1𝐶 + 𝑖𝜔1𝑎𝑉2𝑉3

𝑉1
exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] (17)

𝑌2 = 𝐼2(𝑖𝜔2)
𝑉2(𝑖𝜔2) = 𝑖𝜔2𝐶 + 𝑖𝜔2𝑎𝑉1𝑉3

𝑉2
exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] (18)

𝑌3 = 𝐼3(𝑖𝜔)
𝑉3(𝑖𝜔) = 𝑖𝜔3𝐶 + 𝑖𝜔3𝑎𝑉1𝑉2

𝑉3
exp[−𝑖(𝜙3 − 𝜙2 − 𝜙1)] (19)

To see the total admittance from the point of view of the signal, for example, we need to add
the parallel admittances of the 𝐺𝑠, 𝐺𝐿, 𝐿1, 𝐶1, 𝐺1. It is a bit tricky since one may be inclined
to think that the 𝐿1 − 𝐶1 tank will have 0 admittance at 𝜔1. However, we have shown in Eq.
7 that the resonance frequency is shifted by 𝐶. Let’s calculate the admittance of the 𝐿1 − 𝐶1
tank at 𝜔1:

𝑌𝐿1−𝐶1
= 1

𝑖𝜔1𝐿1
+ 𝑖𝜔1𝐶1 = 1 − 𝜔2

1𝐿1𝐶1
𝑖𝜔1𝐿1

= 𝜔2
1𝐿1𝐶1
𝑖𝜔1𝐿1

= −𝑖𝜔1𝐶1, (20)

which neatly cancels the first term in Eq. 17. All there is left to do is to add the parallel
admittances of the 𝐺’s, 𝐺𝑇 = 𝐺𝑠 + 𝐺𝐿 + 𝐺1 for the signal circuit.

The current-voltage relations for the three circuits are given by

𝐼𝑠(𝑖𝜔) = {𝐺𝑇 + 𝑖𝜔1𝑎𝑉2𝑉3
𝑉1

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)]} 𝑉1(𝑖𝜔) (21)

0 = {𝐺2 + 𝑖𝜔2𝑎𝑉1𝑉3
𝑉2

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)]} 𝑉2(𝑖𝜔) (22)

𝐼𝑃 (𝑖𝜔) = {𝐺3 + 𝑖𝜔3𝑎𝑉1𝑉2
𝑉3

exp[−𝑖(𝜙3 − 𝜙2 − 𝜙1)]} 𝑉3(𝑖𝜔) (23)

Here 𝐼𝑠(𝑖𝜔) and 𝐼𝑃 (𝑖𝜔) are the Fourier transforms of the input signal and pump currents,
respectively.

By eliminating 𝑉2 and 𝑉3 from Eq. 21 using Eqs. 22 and 23, we obtain the admittance of the
signal circuit.

5



Step-by-step derivation

Solve for 𝑉2 from 22

𝑉2 = 𝑖𝜔2𝑎𝑉1𝑉3
𝐺2

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] (24)

Substitute 𝑉2 into 23
Substituting 24 into 23:

𝐼𝑃 (𝑖𝜔) = {𝐺3 + 𝑖𝜔3𝑎𝑉1
𝑉3

⋅ 𝑖𝜔2𝑎𝑉1𝑉3
𝐺2

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] exp[−𝑖(𝜙3 − 𝜙2 − 𝜙1)]} 𝑉3(𝑖𝜔)

= {𝐺3 + 𝑖𝜔3𝑎 ⋅ 𝑖𝜔2𝑎𝑉 2
1

𝐺2
} 𝑉3(𝑖𝜔) (25)

Solve for 𝑉3 from 25:

𝑉3 = 𝐼𝑃 (𝑖𝜔)
𝐺3 − 𝜔2𝜔3𝑎2𝑉 2

1
𝐺2

(26)

Using 24 and 26 we find 𝑉2𝑉3 product

𝑉2𝑉3 = 𝑖𝜔2𝑎𝑉1𝑉3
𝐺2

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] ⋅ 𝑉3

= 𝑖𝜔2𝑎𝑉1
𝐺2

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] ⋅ 𝐼2
𝑃 (𝑖𝜔)

(𝐺3 − 𝜔2𝜔3𝑎2𝑉 2
1

𝐺2
)

2 (27)

Calculate Signal Admittance
The signal admittance is 𝑌𝑠 = 𝐼𝑠(𝑖𝜔)/𝑉1(𝑖𝜔). From 21:

𝑌𝑠 = 𝐺𝑇 + 𝑖𝜔1𝑎𝑉2𝑉3
𝑉1

exp[𝑖(𝜙3 − 𝜙2 − 𝜙1)] (28)

After substituting the expression for 𝑉2𝑉3 and performing algebraic manipulations involv-
ing the complex exponentials and denominators, we obtain:

𝑌𝑠 = 𝐺𝑇 − 𝐺 = 𝐺𝑇 − 𝜔1𝜔2𝑎2

𝐺2𝐺3

|𝐼𝑃 (𝑖𝜔)|2

∣1 + 𝜔2𝜔3
𝐺2𝐺3

𝑎2𝑉 2
1 ∣2

(29)

The negative conductance emerges as a result of the nonlinear capacitance driven by the pump
wave at 𝜔3. If 𝑉1 satisfies the condition,
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𝜔2𝜔3
𝐺2𝐺3

𝑎2𝑉 2
1 < 1 (30)

the negative conductance is independent of the signal input and the linear parametric ampli-
fication is realized.

Power Gain

The ratio of the power delivered to the load 𝐺𝐿 to the input power to the source 𝐺𝑠 is the
gain in power.

𝒢 = 𝐺𝐿𝑉 2
1

|𝐼𝑠|2/4𝐺𝑠
= 4𝐺𝑠𝐺𝐿

|𝑌𝑠|2 . (31)
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