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Grover’s search algorithm represents one of the most significant achievements
in quantum computing, providing a quadratic speedup for searching unsorted
databases. While classical algorithms require O(N) operations to find a specific
item among N entries, Grover’s algorithm accomplishes this task in just O(√N)
operations. This article explores the mathematical foundations of the algorithm,
including the oracle function, diffusion operator, and the geometric interpretation
of quantum state rotations in Hilbert space. The algorithm’s elegance lies in its sys-
tematic amplification of the target state’s amplitude through repeated applications
of oracle and diffusion operations, demonstrating quantum computing’s practical
advantages for search problems.
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Basic Elements of Quantum Algorithms

The most basic element of a QC is a quantum bit, qubit for short, which is a two-level quantum
system. It spans a two-dimensional Hilbert space denoted as 𝐻2. 𝐻2 is equipped with a fixed
basis (|0⟩, |1⟩), a so-called computational basis. States |0⟩ and |1⟩ are called the basis states.
A general state of a single quantum bit is a vector that can be written as:

𝑐0|0⟩ + 𝑐1|1⟩, (1)

where |𝑐0|2 + |𝑐1|2 = 1
We can extend this definition to multiple qubits: for example, a system of two qubits describes a
four-dimensional Hilbert space 𝐻4 = 𝐻2⊗𝐻2 having an orthonormal basis (|00⟩, |01⟩, |10⟩, |11⟩).
A state of a two-qubit system is a unit-length vector

𝑐0|00⟩ + 𝑐1|01⟩ + 𝑐2|10⟩ + 𝑐3|11⟩, (2)
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with |𝑐0|2 + |𝑐1|2 + |𝑐2|2 + |𝑐3|2 = 1.

One of the most important gates in QC is the Hadamard gate, denoted by 𝐻, and it is defined
as follows:

𝐻|x⟩ = 1√
2

∑
y

(−1)x.𝑦|y⟩ (3)

Applying 𝐻 to the computational basis we get

𝐻|0⟩ = 1√
2

(|0⟩ + |1⟩),

𝐻|1⟩ = 1√
2

(|0⟩ − |1⟩). (4)

The Hadamard gate basically creates superpositions out of pure states, and it can also be
written in matrix form as follows:

𝐻 = 1√
2

( 1 1
1 −1 ) . (5)

Using Hadamard transformations along with phase shift operations, one can implement the
quantum Fourier transform (QFT), which is basically the classical discrete Fourier transform
applied to the quantum state vector:

𝑄𝐹𝑇 |𝑥⟩ = 1√
𝑁

𝑁−1
∑
𝑦=1

𝑒 −2𝜋𝑖𝑥.𝑦
𝑁 |𝑦⟩ (6)

This transformation is a key element in many quantum algorithms, including Shor’s factoriza-
tion algorithm.

Grover’s Algorithm

Grover’s search algorithm enables a QC to find a specific item in an unsorted database of 𝑁 en-
tries using 𝒪(

√
𝑁) operations whereas a classical algorithm would require 𝒪(𝑁) operations.

Consider a database with 𝑁 entries, one of which is the target entry. The goal is to find the
index of that particular entry with the least number of queries. The database can be treated
as a black box, which is usually referred to as an oracle, that calculates a simple function:
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𝑓(𝑥) = {1 𝑥 = 𝑤
0 𝑥 ≠ 𝑤, (7)

where 𝑤 is the entry we are trying to locate. We are going to feed a state |𝑥⟩|𝑞⟩ into the oracle
where 𝑥 represents the index we are querying and 𝑞 is an ancillary bit which will be used by
the oracle to return the query result. If we hit the index of the special entry, i.e. 𝑥 = 𝑤, the
oracle will flip the ancillary bit, otherwise it will return the same value1. So mathematically,
what the oracle is doing is the following transformation:

|𝑥⟩|𝑞⟩ → |𝑥⟩|𝑓(𝑥) ⊕ 𝑞⟩. (8)

Here are the steps of the algorithm:

1. Prepare a uniform superposition of numbers 0 to 𝑁 − 1: |𝑠⟩ = 1√
𝑁 ∑𝑁−1

𝑥=0 |𝑥⟩,
2. Append the ancillary bit |𝑞⟩ = (|0⟩ − |1⟩)/

√
2,

3. Feed this input to the oracle,
4. Apply the Grover diffusion operator 2|𝑠⟩⟨𝑠| − 𝐼 ,
5. Return to Step 3 and repeat

√
𝑁 times,

6. Measure the output.

The algorithm steps are illustrated below:

Figure 1: Grover’s search algorithm circuit Wikipedia.

Note that we are feeding in all of the possible indices at once, so the special index 𝑤 is indeed
fed into the oracle. However, it is just one of the 𝑁 states appearing in the input. With no
clever algorithm, the output will also be in a superposition of 𝑁 states. It will collapse into
one of them when a measurement is done. The probability of this state being the correct one
is just 1/𝑁 , just like in the classical case. A QC’s ability to process all inputs at once is not
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useful unless you can sift through the output using a good algorithm. To understand how
Grover’s algorithm enhances the chances of getting the correct output, let’s take a look at
what the oracle returns for that particular input: 𝑥 = 𝑤 and |𝑞⟩ = (|0⟩ − |1⟩)/

√
2. Using Eq.

8, we get:

|𝑤⟩|𝑞⟩ = |𝑤⟩|0⟩ − |1⟩)√
2

→ |𝑤⟩|1 ⊕ 0⟩ − |1 ⊕ 1⟩√
2

= |𝑤⟩|1⟩ − |0⟩√
2

= −|𝑤⟩|𝑞⟩, (9)

which is simply the negative of the input value. One can repeat the same calculation and show
that when 𝑥 ≠ 𝑤, the oracle output is equal to its input. Based on these two observations, we
can define the effect of the oracle in the operator form:

𝑈𝑤 = 𝐼 − |𝑤⟩⟨𝑤|, (10)

which is easy to understand: if the object it operates on has |𝑤⟩ content, then the sign on that
component will be flipped. Let’s apply the oracle operation 𝑈𝑤 to the uniform superposition
|𝑠⟩:

𝑈𝑤|𝑠⟩ = (𝐼 − |𝑤⟩⟨𝑤|)|𝑠⟩ = |𝑠⟩ − 2√
𝑁 |𝑤⟩. (11)

The diffusion operation, 𝑈𝑠 = 2|𝑠⟩⟨𝑠| − 𝐼 will act on the state in Eq. 11 to yield

𝑈𝑠𝑈𝑤|𝑠⟩ = (2|𝑠⟩⟨𝑠| − 𝐼)(|𝑠⟩ − 2√
𝑁

|𝑤⟩) = 𝑁 − 4
𝑁 |𝑠⟩ + 2√

𝑁
|𝑤⟩, (12)

which shows the ingenuity of the algorithm: the amplitude of the state |𝑤⟩ increased from
1/

√
𝑁 to 2√

𝑁 in one iteration. In fact, if 𝑁 = 4, the amplitude becomes 1, which means that
Grover’s algorithm can locate the special entry out of four in a single iteration with 100%
probability. For larger 𝑁 , you need to keep iterating 𝑈𝑠𝑈𝑤 operations

√
𝑁 times to enhance

the amplitude of |𝑤⟩. At each step of the iteration, you are moving the output state closer to
the state represented by |𝑤⟩. The operations can be visualized as rotations in Hilbert space of
quantum states as illustrated below.
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Figure 2: The rotations involved in the search algorithm.

1 You may ask why we simply do not return 1 or 0 depending on 𝑥 = 𝑤. This is because all
the operations in QC have to be reversible. If the oracle overwrote |𝑞⟩ with 0 or 1, the previous
information on |𝑞⟩ would not be recoverable. This is also the reason why there is no quantum
𝐴𝑁𝐷 gate: one cannot uniquely recover the inputs of the 𝐴𝑁𝐷 gate from its output.
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