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A detailed derivation of quantum harmonic oscillator solution using both analyt-
ical and algebraic methods. The post explores the brute force approach of solving
the Schrödinger equation directly, leading to Hermite polynomials and quantized
energy levels. We also demonstrate the elegant ladder operator method that pro-
vides a more intuitive understanding of the quantum system.
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We start from the Schrödinger equation

𝐻𝜓(𝑥, 𝑡) = 𝑖ℏ 𝜕
𝜕𝑡𝜓(𝑥, 𝑡). (1)

The eigenstates of energy satisfy the following equation:

𝐻𝜓(𝑥, 𝑡) = 𝐸𝜓(𝑥, 𝑡) = 𝑖ℏ 𝜕
𝜕𝑡𝜓(𝑥, 𝑡). (2)

The differential equation is separable with the solution:

𝜓(𝑥, 𝑡) = 𝑒 𝑖
ℏ 𝐸𝑡𝜓(𝑥) (3)

The classical Hamiltonian for particle of mass 𝑚 and in a quadratic potential angular frequency
𝜔 reads

𝐻 = 𝑝2

2𝑚 + 1
2𝑚𝜔2𝑥2 (4)

where 𝜔 is the natural frequency of the oscillator. As we move from the classical system to the
quantum system, we upgrade the position and momentum parameters to quantum operators:

𝑥 → ̂𝑥, and 𝑝 → ̂𝑝 (5)
where we added the “hat” to remind ourselves that these are operators. The quantum Hamil-
tonian becomes:

𝐻 = ̂𝑝2

2𝑚 + 1
2𝑚𝜔2 ̂𝑥2. (6)

There are two main methods to calculate the energy eigenstates.
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The hard way

We first follow the brute force method. We have a second order differential equation, and we
bite the bullet and sit down to solve it. We can use the coordinate basis where ̂𝑥 and ̂𝑝 have
the following representations:

̂𝑥 = 𝑥, and ̂𝑝 = −𝑖ℏ 𝑑
𝑑𝑥 (7)

Therefore, the coordinate part of the Schrödinger equation becomes:

(− ℏ2

2𝑚
𝑑2

𝑑𝑥2 + 1
2𝑚𝜔2𝑥2) 𝜓(𝑥) = 𝐸𝜓(𝑥). (8)

We can define a couple of dimensionless quantities 𝜒 = 𝑥√𝑚𝜔
ℏ and 𝜖 = 2𝐸

ℏ𝜔 to get:

(− 𝑑2

𝑑𝜒2 + 𝜒2 − 𝜖) 𝜓(𝑥) = 0. (9)

We should first try to understand the asymptotic solution where 𝜒2 ≫ 𝜖:

(− 𝑑2

𝑑𝜒2 + 𝜒2) 𝜓(𝑥) ≃ 0. (10)

This equation has a special solution called parabolic cylinder functions. However, since we are
looking for the asymptotic solutions, we can make an educated guess of the form 𝑒−𝛼𝜒2 and
plug it in to find that 𝛼 = 1/2 solves the differential equation at the first order. Or, we can
try to split the − 𝑑2

𝑑𝜒2 + 𝜒2 operator into two first order operators and drop a small term in the
large 𝜒 limit:

(− 𝑑2

𝑑𝜒2 + 𝜒2) 𝜓(𝑥) ≃ (− 𝑑
𝑑𝜒 + 𝜒) ( 𝑑

𝑑𝜒 + 𝜒) 𝜓(𝑥) ≃ 0. (11)

We then combine the asymptotic solution with a yet-unknown function and propose a solution
of the following form:

𝜓(𝜒) = 𝑒− 𝜒2
2 ℎ(𝜒) (12)

up to the normalization constant, which we will calculate later. Plugging this back into
\ref{eq:seqpos2), we get the following second order differential equation.

(− 𝑑2

𝑑𝜒2 + 2𝜒 𝑑
𝑑𝜒 + 1 − 𝜖) ℎ(𝜒) = 0. (13)

We can now try a power series of the form

ℎ(𝜒) =
∞

∑
𝑗=0

𝑐𝑗𝜒𝑗 (14)
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Inserting this back in, we get:

−
∞

∑
𝑗=0

𝑗(𝑗 − 1)𝑐𝑗𝜒𝑗−2 +
∞

∑
𝑗=0

(2𝑗 + 1 − 𝜖)𝑐𝑗𝜒𝑗 = 0 (15)

Since the first two terms in the first summation vanish due to the 𝑗(𝑗 − 1) coefficient, we can
start the first summation index, 𝑗, from 2, and redefine 𝑗 as 𝑗 + 2 and pull the starting point
back to 0:

−
∞

∑
𝑗=0

(𝑗+2)(𝑗+1)𝑐𝑗+2𝜒𝑗+
∞

∑
𝑗=0

(2𝑗+1−𝜖)𝑐𝑗𝜒𝑗 =
∞

∑
𝑗=0

(−(𝑗 + 2)(𝑗 + 1)𝑐𝑗+2 + (2𝑗 + 1 − 𝜖)𝑐𝑗) 𝜒𝑗 = 0

(16)
In order to set this to zero we need to have the recurrence equation:

𝑐𝑗+2 = 2𝑗 + 1 − 𝜖
(𝑗 + 2)(𝑗 + 1)𝑐𝑗 (17)

Note that this is problematic because the coefficients are not decaying fast enough. In fact,
this relation implies that ℎ(𝜒) ∝ 𝑒𝜒2 , and even the prefactor 𝑒−𝜒2/2 will not be decaying fast
enough to make the wavefunction normalizable. The only way out of this is to truncate the
series at some point. Remember that the only knob we have is 𝜖, and we can set it an integer
value such that when 2𝑗 + 1 = 𝜖, the series terminates. This is a profound finding because the
physicality of the solution requires the quantization of the energy. Going back to the original
parameters, 𝐸 = 𝜖ℏ𝜔

2 , we can write the energy as:

𝐸 = ℏ𝜔(𝑛 + 1
2) (18)

There is another subtle problem: note that the recurrence formula relates 𝑐0 to 𝑐2, 𝑐2 to 𝑐4
and so forth, and 𝑐1 to 𝑐3, 𝑐3 to 𝑐5. In other words, the only free coefficients are 𝑐0 and 𝑐1.
As we discussed earlier, we can truncate the series by selecting 𝜖 appropriately. However, we
have only one degree of freedom in 𝜖, and we cannot use that to terminate both of the odd
and even series at the same time. That means only one of the coefficients 𝑐0 and 𝑐1 can be
nonzero at the same time. This is also expected from the parity symmetry of the Hamiltonian:
it stays invariant under 𝑥 → −𝑥, which implies that solutions should stay invariant up to the
sign. Therefore, odd and even powers of 𝜒 cannot mix in the energy eigenstates.

Since the series in Eq. 14 will terminate at 𝑗 = 𝑛/2 due to the recurrence relation in
\ref{eq:recurr), it is convenient to redefine the summation index 𝑠 = 𝑛

2 − 𝑗, and rewrite
the solution as a sum of a finite number of terms:

ℎ𝑛(𝜒) =
⌊𝑛/2⌋
∑
𝑠=0

(−1)𝑠 𝑛!
(𝑛 − 2𝑠)!𝑠!(2𝑥)𝑛−2𝑠, (19)
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where (−1)𝑠 originates from flipping the sign of the numerator in 17, and powers of 2 originate
from 𝑛/2’s in the denominator. These are Hermite polynomials, which can be written explicitly
as

ℎ0(𝜒) = 1
ℎ1(𝜒) = 2𝑥
ℎ2(𝜒) = 4𝑥2 − 2
ℎ3(𝜒) = 8𝑥3 − 12𝑥
ℎ4(𝜒) = 16𝑥4 − 48𝑥2 + 12 (20)

⋮ (21)

Now we have to deal with the normalization of the wavefunction in 12. There is a very elegant
way of doing this via the generating function. Let’s multiply \ref{eq:hermite) with 𝑡𝑛

𝑛! and
sum over 𝑛:

𝑔(𝜒, 𝑡) ≡
∞

∑
𝑛=0

𝑡𝑛

𝑛!ℎ𝑛(𝜒) =
∞

∑
𝑛=0

⌊𝑛/2⌋
∑
𝑠=0

(−1)𝑠 𝑡𝑛

(𝑛 − 2𝑠)!𝑠!(2𝜒)𝑛−2𝑠 =
∞

∑
𝑛=0

∞
∑
𝑠=0

(−1)𝑠 𝑡𝑛

(𝑛 − 2𝑠)!𝑠!(2𝜒)𝑛−2𝑠,(22)

where we extended the summation upper limit since we will negative factorials give negative
infinities killing all the terms for 𝑠 > 𝑛/2. Now define 𝑛 − 2𝑠 = 𝑚 and do some shuffling:

𝑔(𝜒, 𝑡) =
∞

∑
𝑚=0

∞
∑
𝑠=0

(−1)𝑠 𝑡𝑚+2𝑠

𝑚!𝑠! (2𝜒)𝑚 =
∞

∑
𝑠=0

(−𝑡2)𝑠

𝑠!
∞

∑
𝑚=0

(2𝑡𝜒)𝑚

𝑚! = 𝑒−𝑡2+2𝑡𝜒. (23)

Now it becomes an easy task to compute the normalization factor. Consider the following:

∫
∞

−∞
𝑑𝜒𝑒−𝜒2𝑔(𝜒, 𝑡)𝑔(𝜒, 𝑞) = ∫

∞

−∞
𝑑𝜒𝑒−𝜒2−𝑡2+2𝑡𝜒−𝑞2+2𝑞𝜒 = ∫

∞

−∞
𝑑𝜒𝑒−(𝜒−𝑡−𝑞)2+2𝑞𝑡 = √𝜋𝑒2𝑞𝑡 = √𝜋

∞
∑
𝑛=0

(2𝑞𝑡)𝑛

𝑛! ,(24)

and evaluate the integral in the series expansion:

∫
∞

−∞
𝑑𝜒𝑒−𝜒2𝑔(𝜒, 𝑡)𝑔(𝜒, 𝑞) = ∫

∞

−∞
𝑑𝜒𝑒−𝜒2

∞
∑
𝑛=0

𝑡𝑛

𝑛!ℎ𝑛(𝜒)
∞

∑
𝑚=0

𝑞𝑚

𝑚! ℎ𝑚(𝜒) =
∞

∑
𝑛=0

∞
∑
𝑚=0

𝑡𝑛

𝑛!
𝑞𝑚

𝑚! ∫
∞

−∞
𝑑𝜒𝑒−𝜒2ℎ𝑛(𝜒)ℎ𝑚(𝜒)

=
∞

∑
𝑛=0

(𝑞𝑡)𝑛

(𝑛!)2 ∫
∞

−∞
𝑑𝜒𝑒−𝜒2ℎ𝑛(𝜒)ℎ𝑛(𝜒) +

∞
∑
𝑛=0

∞
∑

𝑚=0,𝑚≠𝑛

𝑡𝑛

𝑛!
𝑞𝑚

𝑚! ∫
∞

−∞
𝑑𝜒𝑒−𝜒2ℎ𝑛(𝜒)ℎ𝑚(𝜒).(25)

By comparing the coefficients of 𝑞𝑡 terms in Eqs. 24 and 25, we first see that the cross terms
should vanish. We also get the normalization constant:

∫
∞

−∞
𝑑𝜒𝑒−𝜒2ℎ𝑛(𝜒)ℎ𝑚(𝜒) = 2𝑛√𝜋𝑛!𝛿𝑛,𝑚. (26)
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The orthogonality of the eigenfunctions is not a coincidence since the differential operator
we are dealing with can be transformed into a self-adjoint form, and the orthogonality is
guaranteed due to the Sturm-Liouville theory[1]. Putting it all together we have the normalized
energy eigenstates:

𝜓𝑛(𝑥) = (𝑚𝜔
𝜋ℏ )

1
4 1√

2𝑛𝑛!
ℎ𝑛 (√𝑚𝜔

ℏ 𝑥) 𝑒− 𝑚𝜔𝑥2
2ℏ , 𝑛 = 0, 1, 2, ... . (27)

It is operationally more practical to combine ̂𝑥 and ̂𝑝 operators into raising and lowering ladder
operators. The harder method is based on the recurrence relations of the Hermite polynomials.
Taking the derivative of the equality in 22 with respect to 𝜒, we get:

𝜕
𝜕𝜒𝑔(𝜒, 𝑡) = 2𝑡𝑒−𝑡2+2𝑡𝜒 = 2

∞
∑
𝑛=0

𝑡𝑛+1

𝑛! ℎ𝑛(𝜒) = 2
∞

∑
𝑚=1

𝑡𝑚

(𝑚 − 1)!ℎ𝑚−1(𝜒) = 2
∞

∑
𝑚=1

𝑚𝑡𝑚

𝑚! ℎ𝑚−1(𝜒) = 2
∞

∑
𝑛=0

𝑛𝑡𝑛

𝑛! ℎ𝑛−1(𝜒)

=
∞

∑
𝑛=0

𝑡𝑛

𝑛!ℎ
′
𝑛(𝜒), (28)

where we first defined 𝑚 = 𝑛 + 1, and then relabeled 𝑚 as 𝑛. We also added the vanishing
𝑛 = 0 term in the summation to make the sum start from 0. Matching the coefficients of 𝑡𝑛

terms, we get the first recurrence relation of the Hermite functions:

2𝑛ℎ𝑛−1(𝜒) = ℎ′
𝑛(𝜒). (29)

Let’s try taking the derivative with respect to 𝑡 to get:

𝜕
𝜕𝑡𝑔(𝜒, 𝑡) = (−2𝑡 + 2𝜒)𝑒−𝑡2+2𝑡𝜒 = −2

∞
∑
𝑛=0

𝑡𝑛+1

𝑛! ℎ𝑛(𝜒) + 2
∞

∑
𝑛=0

𝑡𝑛

𝑛!𝜒ℎ𝑛(𝜒) =
∞

∑
𝑛=0

𝑡𝑛

𝑛! {2𝜒ℎ𝑛(𝜒) − 2𝑛ℎ𝑛−1(𝜒)}

=
∞

∑
𝑛=0

𝑛𝑡𝑛−1

𝑛! ℎ𝑛(𝜒) =
∞

∑
𝑛=0

𝑡𝑛

𝑛!ℎ𝑛+1(𝜒). (30)

Matching the coefficients of 𝑡𝑛 terms, we get the second recurrence relation of the Hermite
functions:

ℎ𝑛+1(𝜒) = 2𝜒ℎ𝑛(𝜒) − 2𝑛ℎ𝑛−1(𝜒). (31)

We can combine Eqs. 29 and 31 to get another flavor:

ℎ𝑛+1(𝜒) = (2𝜒 − 𝑑
𝑑𝜒) ℎ𝑛(𝜒). (32)
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Now consider the following operator acting on 𝜓𝑛(𝜒) as it is defined Eq. 27:

1√
2

(𝜒 − 𝑑
𝑑𝜒) 𝜓𝑛(𝜒) = 1√

2
(𝑚𝜔

𝜋ℏ )
1
4 1√

2𝑛𝑛!
(𝜒 − 𝑑

𝑑𝜒) (ℎ𝑛(𝜒)𝑒− 𝜒2
2 )

= (𝑚𝜔
𝜋ℏ )

1
4

√𝑛 + 1
√2𝑛+1(𝑛 + 1)!

𝑒− 𝜒2
2 (2𝜒 − 𝑑

𝑑𝜒) ℎ𝑛(𝜒) =
√

𝑛 + 1𝜓𝑛+1(𝜒),(33)

where we used Eqs. 32.

Now consider another operator acting on 𝜓𝑛(𝜒):

1√
2

(𝜒 + 𝑑
𝑑𝜒) 𝜓𝑛(𝜒) = 1√

2
(𝑚𝜔

𝜋ℏ )
1
4 1√

2𝑛𝑛!
(𝜒 + 𝑑

𝑑𝜒) (ℎ𝑛(𝜒)𝑒− 𝜒2
2 ) = (𝑚𝜔

𝜋ℏ )
1
4 1√

2𝑛+1𝑛!
𝑒− 𝜒2

2 ℎ′
𝑛(𝜒)

= (𝑚𝜔
𝜋ℏ )

1
4 1

2√𝑛√2𝑛−1(𝑛 − 1)!
𝑒− 𝜒2

2 2𝑛ℎ𝑛−1(𝜒) = √𝑛𝜓𝑛−1(𝜒), (34)

where we used Eqs. 29. The operators 1√
2 (𝜒 ± 𝑑

𝑑𝜒) can be written in terms of 𝑥 and ̂𝑝 and
they will be called 𝑎 and 𝑎†, and that would be how one solves the harmonic oscillator the
hard way. Now let’s look into the method of operators.

The operational way

We can define the ladder operators as follows:

𝑎 = 1√
2𝑚ℏ𝜔

(𝑚𝜔𝑥+𝑖𝑝), 𝑎† = 1√
2𝑚ℏ𝜔

(𝑚𝜔𝑥−𝑖𝑝) ⟺ ̂𝑥 = √ ℏ
2𝑚𝜔(𝑎+𝑎†), ̂𝑝 = −𝑖√𝑚ℏ𝜔

2 (𝑎−𝑎†).
(35)

The commutation relation [𝑥, 𝑝] = 𝑖ℏ turns to

[𝑎, 𝑎†] = 1. (36)

The Hamiltonian becomes
𝐻 ≡ ℏ𝜔(𝑎†𝑎 + 1

2). (37)

Comparing Eq. 37 with Eq. 18 we can associate 𝑎†𝑎 with number operator:

𝑁 = 𝑎†𝑎, (38)

which returns the state number:
𝑁|𝑛⟩ = 𝑛|𝑛⟩. (39)

Let’s now figure out how 𝑎 and 𝑎† act on eigenstate |𝑛⟩. We can read the energy value by
acting on the new state with 𝐻:

𝐻𝑎|𝑛⟩ = (𝑎𝐻 + [𝐻, 𝑎]) |𝑛⟩ = (𝑎𝐻 − 𝑎ℏ𝜔) |𝑛⟩ = ℏ𝜔 (𝑛 − 1 + 1
2) 𝑎|𝑛⟩, (40)
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which shows that the state 𝑎|𝑛⟩ can be indexed as 𝑛 − 1, i.e., 𝑎|𝑛⟩ = 𝑐|𝑛 − 1⟩ where 𝑐 is the
normalization constant. The overall coefficient 𝑐 can be calculated as

|𝑎|𝑛⟩|2 = ⟨𝑛|𝑎†𝑎|𝑛⟩ = 𝑛⟨𝑛|𝑛⟩ = 𝑛 = |𝑐|2 ⟹ 𝑐 = √𝑛. (41)

Therefore the lowering operator 𝑎 does the following:

𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩. (42)

As a consequence of 42, we see that the ground state, |0⟩, will be annihilated by the operator
𝑎

𝑎|0⟩ = 0. (43)
Let’s repeat for 𝑎†:

𝐻𝑎†|𝑛⟩ = (𝑎†𝐻 + [𝐻, 𝑎†]) |𝑛⟩ = (𝑎†𝐻 + 𝑎†ℏ𝜔) |𝑛⟩ = ℏ𝜔 (𝑛 + 1 + 1
2) 𝑎|𝑛⟩, (44)

which shows that the state 𝑎†|𝑛⟩ can be indexed as 𝑛 + 1, i.e., 𝑎†|𝑛⟩ = 𝑑|𝑛 + 1⟩ where 𝑑 is the
normalization constant. The overall coefficient 𝑑 can be calculated as

|𝑎†|𝑛⟩|2 = ⟨𝑛|𝑎𝑎†|𝑛⟩ = ⟨𝑛|𝑎†𝑎 + [𝑎, 𝑎†]|𝑛⟩ = (𝑛 + 1)⟨𝑛|𝑛⟩ = 𝑛 = |𝑑|2 ⟹ 𝑑 =
√

𝑛 + 1. (45)

Therefore the lowering operator 𝑎† does the following:

𝑎†|𝑛⟩ =
√

𝑛 + 1|𝑛 + 1⟩. (46)

By recursively applying 𝑎† on |0⟩ we can get the 𝑛-th energy eigenstate, |𝑛⟩:

|𝑛⟩ = (𝑎†)𝑛
√

𝑛!
|0⟩. (47)

Let’s take a look at certain expectation values. We can immediately see that the expected
values of 𝑥 and ̂𝑝 = 𝑖ℏ 𝑑

𝑑𝑥 vanish since the integrands of ⟨𝜓𝑛|𝑥|𝜓𝑛⟩ and ⟨𝜓𝑛| ̂𝑝|𝜓𝑛⟩ are odd and
the integration range is symmetric around the origin. Equivalently we can do the computation
using the ladder operators:

⟨ ̂𝑥⟩𝑛 = ⟨𝑛| ̂𝑥|𝑛⟩ = √ ℏ
2𝑚𝜔⟨𝑛|(𝑎 + 𝑎†)|𝑛⟩ = 0. (48)

Similarly for 𝑝, we have:

⟨ ̂𝑝⟩𝑛 = ⟨𝑛| ̂𝑝|𝑛⟩ = −𝑖√𝑚ℏ𝜔
2 ⟨𝑛|𝑎 − 𝑎†|𝑛⟩ = 0. (49)

Now consider the quadratic operators:

⟨ ̂𝑥2⟩𝑛 = ⟨𝑛| ̂𝑥2|𝑛⟩ = ℏ
2𝑚𝜔⟨𝑛|(𝑎 + 𝑎†)2|𝑛⟩ = ℏ

2𝑚𝜔⟨𝑛|(2𝑎†𝑎 + [𝑎, 𝑎†])|𝑛⟩ = ℏ
2𝑚𝜔(2𝑛 + 1). (50)
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Similarly for 𝑝, we have:

⟨ ̂𝑝2⟩𝑛 = ⟨𝑛| ̂𝑝2|𝑛⟩ = −𝑚ℏ𝜔
2 ⟨𝑛|(𝑎 − 𝑎†)2|𝑛⟩ = 𝑚ℏ𝜔

2 ⟨𝑛|2𝑎†𝑎 + [𝑎, 𝑎†]|𝑛⟩ = ℏ
2𝑚𝜔(2𝑛 + 1). (51)

The uncertainity in 𝑥 and 𝑝 for state 𝑛 are given as:

⟨(Δ𝑥)2⟩𝑛 = ⟨ ̂𝑥2⟩𝑛 − (⟨ ̂𝑥⟩𝑛)2 = ℏ
2𝑚𝜔(2𝑛 + 1), (52)

and
⟨(Δ𝑝)2⟩𝑛 = ⟨ ̂𝑝2⟩𝑛 − (⟨ ̂𝑝⟩𝑛)2 = ℏ𝑚𝜔

2 (2𝑛 + 1). (53)

The Heisenberg relation becomes

(Δ𝑥)2(Δ𝑝)2 = ℏ2

4 (2𝑛 + 1)2, (54)

which has the minimum value of ℏ2
4 at 𝑛 = 0.

[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 4th edition. Aca-
demic Press, San Diego, 1995, pp. 537–547.
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