Quantum Harmonic Oscillator
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A detailed derivation of quantum harmonic oscillator solution using both analyt-
ical and algebraic methods. The post explores the brute force approach of solving
the Schrodinger equation directly, leading to Hermite polynomials and quantized
energy levels. We also demonstrate the elegant ladder operator method that pro-
vides a more intuitive understanding of the quantum system.
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We start from the Schrédinger equation

H (1) = ih (1), )
The eigenstates of energy satisfy the following equation:
H(a, 1) = B, 1) = ih (o, 1) (2)

The differential equation is separable with the solution:

Y(z,t) = et Pla(z) (3)
The classical Hamiltonian for particle of mass m and in a quadratic potential angular frequency
w reads )
1
H= QP—m + §mw2:ﬂ2 (4)

where w is the natural frequency of the oscillator. As we move from the classical system to the
quantum system, we upgrade the position and momentum parameters to quantum operators:

r— 2, andp—D (5)

where we added the “hat” to remind ourselves that these are operators. The quantum Hamil-

tonian becomes:
p* 1 .
H = o + imwaQ. (6)

There are two main methods to calculate the energy eigenstates.
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The hard way

We first follow the brute force method. We have a second order differential equation, and we
bite the bullet and sit down to solve it. We can use the coordinate basis where & and p have

the following representations:

d
“ d5——in®
z=u2z, and p = —1t (7)

Therefore, the coordinate part of the Schréodinger equation becomes:

(—hch + 1mw2x2> Y(z) = Ed(x). (8)

We can define a couple of dimensionless quantities x = z,/"* and € = % to get:

2
<—d2 +x% - 5) Y(z) =0 9)
We should first try to understand the asymptotic solution where y? > e:
d? 9
<_d><2 +X ) Y(x) ~0. (10)

This equation has a special solution called parabolic cylinder functions. However, since we are
looking for the asymptotic solutions, we can make an educated guess of the form ex* and
plug it in to find that o = 1/2 solves the differential equation at the first order. Or, we can
try to split the —dd—; + x? operator into two first order operators and drop a small term in the
large x limit:

(a5 ) o) = (0 (4 x) vt =0 (1)

We then combine the asymptotic solution with a yet-unknown function and propose a solution
of the following form:

¥(x) = €% h(y) (12)

up to the normalization constant, which we will calculate later. Plugging this back into
\ref{eq:seqpos2), we get the following second order differential equation.

S A PR (13)
dx? de ) =5

We can now try a power series of the form

M) =3 e (1)



Inserting this back in, we get:

o0 [e¢]
=Y G = Depxd 2+ (2 +1—e)ejx! =0 (15)
=0 =0

Since the first two terms in the first summation vanish due to the j(j — 1) coefficient, we can
start the first summation index, j, from 2, and redefine j as j + 2 and pull the starting point
back to 0:

=D (2D X +)_(2i+l—e)epd =Y (7 +2) (G + Dejpp + (25 +1—€)e;) X7 =0
3=0 §=0 §=0
(16)
In order to set this to zero we need to have the recurrence equation:
2j+1—c¢
Civg= ——————C; (17)
T G+20+D

Note that this is problematic because the coefficients are not decaying fast enough. In fact,

this relation implies that h(x) exz, and even the prefactor e X*/2 will not be decaying fast

enough to make the wavefunction normalizable. The only way out of this is to truncate the

series at some point. Remember that the only knob we have is €, and we can set it an integer

value such that when 25+ 1 = ¢, the series terminates. This is a profound finding because the

physicality of the solution requires the quantization of the energy. Going back to the original
ehw

parameters, I/ = <°, we can write the energy as:

E:th+%) (18)
There is another subtle problem: note that the recurrence formula relates ¢, to ¢y, ¢y to ¢4
and so forth, and ¢; to c3, c3 to c5. In other words, the only free coefficients are ¢, and c;.
As we discussed earlier, we can truncate the series by selecting € appropriately. However, we
have only one degree of freedom in €, and we cannot use that to terminate both of the odd
and even series at the same time. That means only one of the coefficients ¢, and ¢; can be
nonzero at the same time. This is also expected from the parity symmetry of the Hamiltonian:
it stays invariant under x — —x, which implies that solutions should stay invariant up to the
sign. Therefore, odd and even powers of x cannot mix in the energy eigenstates.

Since the series in Eq. 14 will terminate at j = n/2 due to the recurrence relation in
\ref{eq:recurr), it is convenient to redefine the summation index s = % — j, and rewrite
the solution as a sum of a finite number of terms:

[n/2]
hy(X) = (—1)Sm(2x)n_2sa (19)



where (—1)* originates from flipping the sign of the numerator in 17, and powers of 2 originate
from n/2’s in the denominator. These are Hermite polynomials, which can be written explicitly
as

ho(x) = 1

hi(x) = 2z

ho(x) = 42?2

hs(x) = 8z3—12x

hy(x) = 162* — 4822 412 (20)

(21)

Now we have to deal with the normalization of the wavefunction in 12. There is a very elegant
way of doing this via the generating function. Let’s multiply \ref{eq:hermite) with % and
sum over n:

oo Ln/2] 0o 00
tn tn
gb0t) = nzon, 0= 30 3 0 e = 35y e

where we extended the summation upper limit since we will negative factorials give negative
infinities killing all the terms for s > n/2. Now define n — 2s = m and do some shuffling:

oo 00 o0 t2 s o0 QtXm .
goet) = oSl Sagm =3 CEE S BT e oy

3

Now it becomes an easy task to compute the normalization factor. Consider the following:

oo oo 0o X (9gt)"
/ dxe ™ g(x,)g(x.q) = / dxe " A 20 = / dye Ot 20t = /et — /7y (4%%‘4)
ni
—00 —00 —00 n=0

and evaluate the integral in the series expansion:

o] s o] _QOOtn ooqm ooootnqm o] s
LO dxe ™ g(x,t)9(x.q) = [OO dxe™ ) —hn(x) Y b, 0 =>) '/_Oo dxe ™ hyy (X) P (X)

n=0 m=0 m! n=0 m=0 ntm!
= SR [ aeehon Y Y DL [ de o9
n=0 \""" —o0 n=0m=0m+#n

By comparing the coefficients of ¢t terms in Eqs. 24 and 25, we first see that the cross terms
should vanish. We also get the normalization constant:

/ dxe ™ hy, (X) iy (X) = 2"V/7N1G,, 0 (26)



The orthogonality of the eigenfunctions is not a coincidence since the differential operator
we are dealing with can be transformed into a self-adjoint form, and the orthogonality is
guaranteed due to the Sturm-Liouville theory[1]. Putting it all together we have the normalized
energy eigenstates:

mw\ i 1 Imw  mwa?
?l)n(l') = (ﬁ) %hn ( hl’) e 2h n = 0, 1,2, oo (27)

It is operationally more practical to combine Z and p operators into raising and lowering ladder
operators. The harder method is based on the recurrence relations of the Hermite polynomials.
Taking the derivative of the equality in 22 with respect to x, we get:

0 £ = 9pe—t+2x _ o t”+1 , oo . 00 mtmh . 0 ntnh
ag(X7 ) - nz;] n! n n; _1' m 1<X)_ ;W m—l(X)_ ;F n—l()

e @]

- ann (2

where we first defined m = n + 1, and then relabeled m as n. We also added the vanishing
n = 0 term in the summation to make the sum start from 0. Matching the coefficients of ¢™
terms, we get the first recurrence relation of the Hermite functions:

2nh, 1 (x) = hy(x)- (29)
Let’s try taking the derivative with respect to t to get:

%g(x,ﬂ = (=2t 2x)e X =

0423 S0 = 3 5 (2, (0 — 2, (00)
n=0 """ n=0 """

o0 tnl X n

- Z” i (- (30)

n=0
Matching the coefficients of t" terms, we get the second recurrence relation of the Hermite
functions:

i1 (x) = 2xh, (X) — 210, 1 (X)- (31)

We can combine Eqgs. 29 and 31 to get another flavor:

1 (X) = <2x - dx) B (X)- (32)



Now consider the following operator acting on 1,,(x) as it is defined Eq. 27:

()0 = S5 () o () (haboe¥)

) (7::)1 m o (gx_cgc)hn<x>=m¢nﬂ<¢a>s>

where we used Eqs. 32.

Now consider another operator acting on ,,(x):

\}5 (x + ;;) o(x) = \}5 (%) \/;n—m (x + CZ() <hn(x)e—x72> = (%) 2:“”!@—5;1,
=5 2,y (%) = Vit (X),

(mw> i 1

— e
T/ 2\/ny/2"1(n—1)!
where we used Eqgs. 29. The operators % (X + %) can be written in terms of x and p and

they will be called @ and af, and that would be how one solves the harmonic oscillator the
hard way. Now let’s look into the method of operators.

The operational way

We can define the ladder operators as follows:

L (muatip), al = S (muwr—ip) = & =\/g'—(atal), p=—iy] "2 (a—a)
a= mwz+ip), a' = mwr—i T = a+al), =—i a—al).
2mhw b V2mhw b 2mw b 2
(35)
The commutation relation [z, p] = ih turns to
[a,af] = 1. (36)
The Hamiltonian becomes )
H = hw(ata + 5) (37)
Comparing Eq. 37 with Eq. 18 we can associate a'a with number operator:
N =ala, (38)
which returns the state number:
N|n) = n|n). (39)

Let’s now figure out how a and a' act on eigenstate |n). We can read the energy value by
acting on the new state with H:

Haln) = (aH + [H,a]) |n) = (aH — ahw) |n) = hw (n -1+ ;) alny, (40)



which shows that the state a|n) can be indexed as n — 1, i.e., aln) = ¢|n — 1) where ¢ is the
normalization constant. The overall coefficient ¢ can be calculated as

laln)|? = (n|ataln) = n{nn) =n = |c|> = c=V/n. (41)
Therefore the lowering operator a does the following:
aln) = v/nln — 1). (42)

As a consequence of 42, we see that the ground state, |0), will be annihilated by the operator
a

al0) = 0. (43)
Let’s repeat for a':

Halln) = (aVH + (H,al]) o) = (o' H + alhw) o) = oo (n+1+ 3 ) alm), (49)

which shows that the state af|n) can be indexed as n + 1, i.e., af|n) = d|n + 1) where d is the
normalization constant. The overall coefficient d can be calculated as

laT|n}|? = (n|aa’|n) = (n|a’a + [a,a’]|n) = (n+ 1){nn) =n=1d|> = d=+vn+1. (45)
Therefore the lowering operator af does the following:

afln) = vn +1n+1). (46)

By recursively applying a' on |0) we can get the n-th energy eigenstate, |n):

In) = 10)- (47)

Let’s take a look at certain expectation values. We can immediately see that the expected
values of z and p = ifi-L vanish since the integrands of (1), |z[¢,,) and (1, |p|t),,) are odd and
the integration range is symmetric around the origin. Equivalently we can do the computation
using the ladder operators:

(8, = (nliln) = \/ 5 (nl(a+ a")ln) = 0. (18)
(B = (nlpin) = —iy "2 o — aln) = 0. (49)

Now consider the quadratic operators:

Similarly for p, we have:

(32), = (nl#%In) = 5 —(nl(a+ a0} = 5 {n|(2ala +[a,a]) ) = 5 (20 + 1), (50)



Similarly for p, we have:

(52, = {nlp2ln) = —"2% (nl(a — a")2In) = "2 (mj2ata + [a,afljn) = 5 —(2n+1). (51)

The uncertainity in z and p for state n are given as:

(B)2), = (32), — (@) = 520+ 1), (52)
and "
(Ap)?),, = (1%, — ((P)a)? = —5—(2n + 1), (53)

The Heisenberg relation becomes

(Az)%(Ap)? = %(Qn +1)2, (54)

which has the minimum value of % at n=0.
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