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This article presents the theoretical foundations of superconducting qubits based
on Josephson junctions. We derive the dynamics of Cooper pair tunneling through
thin insulating barriers using the Ginzburg-Landau approximation, showing how
unbiased junctions behave as harmonic oscillators while biased junctions exhibit
sinusoidal current-voltage relationships. The key insight is that by controlling
the bias current, we can create a double-well potential that supports exactly two
quantum states, forming the basis of a qubit. We demonstrate how these qubits
can be manipulated through RF perturbations to achieve arbitrary rotations on
the Bloch sphere, measured by barrier height modulation, and coupled through
capacitive elements for multi-qubit operations.

blog: https://tetraquark.vercel.app/posts/quantum_SC/?src=pdf
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Figure 1: Illustration of Josephson junction and the tunneling process.

A superconducting qubit is a Josephson Junction (JJ) which is composed of two supercon-
ducting metals separated by a thin insulator as shown in Figure 1. The current through a JJ
is carried by tunneling Cooper pairs. A JJ can be described in the Ginzburg-Landau (GL)
approximation. Quantum state of the system can be described by wavefunctions

𝜓𝑖 = √𝑛𝑖𝑒𝑖𝜙𝑖 , (1)

where 𝑖 = 1, 2 labels the left and the right regions. In GL model the electron number density
of Cooper pairs (2𝑒 charge) in the 𝑖𝑡ℎ region is given by 𝑛𝑖 = |𝜓𝑖|2, and the current is given by
𝑖 = 2𝑒𝑛̇ where 𝑛 = 𝑛2 − 𝑛1. We can assume that 𝑛1 ≈ 𝑛2 ≈ 𝑛0/2. However we will carefully
keep track of the difference 𝑛. We will first consider the junction with no bias voltage.

Unbiased Josephson Junction

Although there is no external voltage applied, there will be a voltage difference between the
two regions if 𝑛 ≠ 0. This potential difference between the regions is Δ𝑉 = −𝑛𝑒/𝐶, where 𝐶
is the capacitance of the junction. Hence, the energy difference is Δ𝑈 = 2𝑒Δ𝑉 = −2𝑛𝑒2/𝐶.
We can now write the Schrodinger equations for the wave functions 𝜓1 and 𝜓2 as

𝑖𝑑𝜓1
𝑑𝑡 = 𝑈𝜓1 − 𝐸𝐽

𝑛0
𝜓2,

𝑖𝑑𝜓2
𝑑𝑡 = (𝑈 + Δ𝑈)𝜓2 − 𝐸𝐽

𝑛0
𝜓1, (2)
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where 𝐸𝐽 is the so-called Josephson Energy. Using 𝜓𝑖 = √𝑛𝑖𝑒𝑖𝜙𝑖 and multiplying the first
(second) line by 𝜓1 (𝜓2), we get

𝑖 𝑛̇1
2 − 𝑛1 ̇𝜙1 = 𝑈𝑛1 − 𝐸𝐽

𝑛0

√𝑛1𝑛2𝑒𝑖𝜙

𝑖 𝑛̇2
2 − 𝑛2 ̇𝜙2 = (𝑈 + Δ𝑈)𝑛1 − 𝐸𝐽

𝑛0

√𝑛1𝑛2𝑒−𝑖𝜙, (3)

where we defined 𝜙 = 𝜙2 − 𝜙1. Taking the imaginary part of the difference of two lines we
get

𝑛̇2 − 𝑛̇1 = 𝑛̇ = 2𝐸𝐽
𝑛0

√𝑛1𝑛2 sin 𝜙 ≃ 𝐸𝐽 sin 𝜙, (4)

from which we can easily get the current as

𝑖 = −2𝑒𝑛̇ = −2𝑒𝐸𝐽 sin 𝜙. (5)

In Eq. 3, dividing the first (second) line by 𝑛1 (𝑛2) and taking the real part of the difference
we get

̇𝜙2 − ̇𝜙1 = ̇𝜙 = −Δ𝑈 − 𝐸𝐽
𝑛0

(√𝑛2
𝑛1

− √𝑛1
𝑛2

) cos 𝜙 ≃ 2𝑛𝑒2

𝐶 , (6)

where we ignored a term with the square roots since it is of second order in 𝑛. Eqs. 4 and 6 are
coupled differential equations, and we decouple them by substituting Eq. 4 in the derivative
of Eq. 6 to get

̈𝜙 = −2𝑒2𝐸𝐽
𝐶 sin 𝜙 ≃ −2𝑒2𝐸𝐽

𝐶 𝜙, (7)

which is an harmonic oscillator with frequency 𝑤𝐽 = √2𝑒2𝐸𝐽
𝐶 . Note that we assumed 𝐸𝐽 > 0,

therefore the oscillations are around 𝜙 = 0. If 𝐸𝐽 < 0, the oscillations will be around 𝜙 = 𝜋.

Biased Josephson Junction

If the junction is connected to a voltage source, the energy difference is Δ𝑈 = 2𝑒𝑉 , where 𝑉
is the applied voltage. We just need to modify Eq. 6,

̇𝜙 ≃ −Δ𝑈 = −2𝑒𝑉 , (8)

which can be solved immediately to yield

𝜙(𝑡) = 𝜙0 − 2𝑒𝑉 𝑡. (9)
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Putting this back into Eq. 5 yields

𝑖(𝑡) = −2𝑒𝐸𝐽 sin 𝜙 = −2𝑒𝐸𝐽 sin(𝜙0 − 2𝑒𝑉 𝑡). (10)

This equation shows the unusual behavior of the Josephson junction: the current is sinusoidal
when the voltage is constant! These are the two important equations in this sub-chapter:

𝑖(𝑡) = 𝐼𝑐 sin 𝜙
𝑑𝜙
𝑑𝑡 = −2𝑒𝑉 . (11)

However, we still need to calculate the Hamiltonian, since it governs the quantum dynamics of
the system. For later convenience, let us assume that the independent variable is the current
and we want to eliminate voltage in favor of it. Let us also assume that we drive the system by
an external current, 𝑖𝑒. The Hamiltonian consists of two parts, the stored electrostatic energy
and the work done by the current on the junction, that is

𝐻 = 𝑄̂2

2𝐶 − ∫ 𝑑𝑡𝐼(𝑡)𝑣(𝑡) = 𝑄̂2

2𝐶 + 1
2𝑒 ∫ 𝑑𝑡(𝐼𝑐 sin 𝜙 − 𝑖𝑒)𝑑𝜙

𝑑𝑡

= 𝑄̂2

2𝐶 − 𝐼𝑐
2𝑒 cos 𝜙 − 𝑖𝑒𝜙

2𝑒 . (12)

Comparing this Hamiltonian with the usual Hamiltonian with 𝑝 and 𝑥, we see that 𝑄̂, 𝜙, and
𝐶 play the role of ̂𝑝, 𝑥, and 𝑚, respectively.

Josephson-Junction Qubits

We will start with the Hamiltonian in Eq. 12

𝐻 = 𝑄̂2

2𝐶 − 𝐼𝑐Φ0
2𝜋 cos ̂𝛿 − 𝐼Φ0

2𝜋
̂𝛿, (13)

where we defined Φ0 = ℎ/2𝑒. Note that the potential in the Hamiltonian is

𝑈 = −𝐼𝑐Φ0
2𝜋 (cos ̂𝛿 + 𝐼

𝐼𝑐
̂𝛿). (14)

Taking the derivative shows that the potential has a minimum if 𝐼
𝐼𝑐

< 0. In the figure we plot
the potential for 𝐼

𝐼𝑐
= 0.95.
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Figure 2: The potential for 𝐼
𝐼𝑐

= 0.95.

The height of the barrier becomes zero if 𝐼
𝐼𝑐

= 1. Therefore, since we can control 𝐼 , we can
control the height of the barrier. If we choose it appropriately, this potential can support two
and only two states.

Let us now decompose the control current into two parts,

𝐼(𝑡) = 𝐼𝑑𝑐 + 𝐼𝑟𝑓 cos(𝑤𝑟𝑓𝑡 + 𝜑), (15)

where 𝐼𝑟𝑓 ≪ 𝐼𝑑𝑐. 𝐼𝑑𝑐 is chosen such that the potential supports two states. The 𝐼𝑟𝑓 part
can be treated as a perturbation over the background. The perturbation Hamitonian can be
written as

𝐻2 = −𝐼𝑟𝑓Φ0
2𝜋 cos(𝑤𝑟𝑓𝑡 + 𝜑) ( ⟨0| ̂𝛿|0⟩ ⟨0| ̂𝛿|1⟩

⟨1| ̂𝛿|0⟩ ⟨1| ̂𝛿|1⟩ )

= −Δ cos(𝑤𝑟𝑓𝑡 + 𝜑)𝜎𝑥. (16)

|0⟩ and |1⟩ are the ground and the first excited states of the system, which can be approximated
by the usual harmonic oscillator states. The diagonal terms vanish due to parity. Now if we
choose our reference energy level at the middle of the two energy levels the full Hamiltonian
can be written as

𝐻 = 𝑤0
2 𝜎𝑧 − Δ cos(𝑤𝑟𝑓𝑡 + 𝜑)𝜎𝑥, (17)

where 𝑤0 is the energy difference between the levels. This Hamiltonian is the same as the one
we considered for the NRM QC and we have shown in that it can generate any rotations in
the Bloch Sphere.

5

https://tetraquark.netlify.app/post/quantum_computation/nrm_qc.htm


Measurement: Measurement in this setup is very simple. By increasing 𝐼𝑑𝑐 we can lower
the height of the barrier to a value between the energy levels. Assume the state is the first
excited one. In this case, the state will have enough energy to go over the barrier, and it can
be measured by a sensor. If the state is the ground one, it will still stay in the barrier.

Coupling: Coupling for the model at hand can be done by capacitors as shown in the figure
below.

I1

C1 γ1

Cc
I2

C2γ2

Figure 3: Two qubits coupled via a coupling capacitor.

For this system the Hamiltonian is

𝐻 = 𝑄̂2
1

2𝐶𝐽
− 𝐼𝑐Φ0

2𝜋 cos ̂𝛿1 − 𝐼Φ0
2𝜋

̂𝛿1 + 𝑄̂2
2

2𝐶𝐽
− 𝐼𝑐Φ0

2𝜋 cos ̂𝛿2 − 𝐼Φ0
2𝜋

̂𝛿2 +
(𝑄̂1 − 𝑄̂2)

2
𝐶𝑐

2𝐶2
𝐽

. (18)

Therefore the coupling is of the form 𝑄̂1𝑄̂2. One can decouple the 𝑄̂ part of the Hamiltonian
by defining 𝑄̂± ∝ 𝑄̂1 ± 𝑄̂2, and similarly for ̂𝛿± ∝ ̂𝛿1 ± ̂𝛿2. This gives

𝐻 = 𝑄̂2
+

2𝐶𝐽
+ 𝑄̂2

−
2𝐶𝐽

+ 𝑉 ( ̂𝛿+, ̂𝛿−). (19)

In the symmetric case, 𝐼𝑑𝑐1 = 𝐼𝑑𝑐2, the eigen states are the symmetric and antisymmetric
combinations of the single junction states. The derivation for two-qubit operations is very
similar to that of NRM quantum computer.
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