
Shor’s Algorithm

2025-07-06

Shor’s algorithm represents one of the most groundbreaking achievements in
quantum computing, demonstrating that quantum computers could theoretically
break widely-used cryptographic systems. This polynomial-time quantum algo-
rithm can efficiently factor large integers by exploiting quantum superposition and
interference to find the period of modular exponentiation.

blog: https://tetraquark.vercel.app/posts/quantum_shor/?src=pdf

email: quarktetra@gmail.com

Basic Elements of Quantum Algorithms

The most basic element of a QC is a quantum bit, qubit for short, which is a two-level quantum
system. It spans a two dimensional Hilbert space denoted as 𝐻2. 𝐻2 is equipped with a fixed
basis (|0⟩, |1⟩), a so-called computational basis. States |0⟩ and |1⟩ are called the basis states.
A general state of a single quantum bit is a vector that can be written as:

𝑐0|0⟩ + 𝑐1|1⟩, (1)

where |𝑐0|2 + |𝑐1|2 = 1
We can extend this definition to multiple qubits: for example, a system of two qubits describes
a four-dimensional Hilbert space 𝐻4 = 𝐻2 ⊗𝐻2 having orthonormal basis (|00⟩, |01⟩, |10⟩, |11⟩).
A state of a two-qubit system is a unit-length vector

𝑐0|00⟩ + 𝑐1|01⟩ + 𝑐2|10⟩ + 𝑐3|11⟩, (2)

with |𝑐0|2 + |𝑐1|2 + |𝑐2|2 + |𝑐3|2 = 1.

One of the most important gates in QC is the Hadamard gate, denoted by 𝐻, and it is defined
as follows:

1

https://tetraquark.vercel.app/posts/quantum_shor/?src=pdf
mailto:quarktetra@gmail.com

𝐻|x⟩ = 1√
2

∑
y

(−1)x.𝑦|y⟩ (3)

Applying 𝐻 to the computational basis we get

|0⟩ = 1√
2

(|0⟩ + |1⟩),

|1⟩ = 1√
2

(|0⟩ − |1⟩). (4)

Hadamard gate basically creates superpositions out of pure states, and it can also be written
in the matrix form as follows:

𝐻 = 1√
2

(1 1
1 −1) . (5)

Using Hadamard transformations along with phase shift operations, one can implement quan-
tum Fourier transform (QFT), which is basically the classical discrete Fourier transform ap-
plied to the quantum state vector:

𝑄𝐹𝑇 |𝑥⟩ = 1√
𝑁

𝑁−1
∑
𝑦=1

𝑒 −2𝜋𝑖𝑥.𝑦
𝑁 |𝑦⟩ (6)

This transformation is the key element in Shor’s factorization algorithm as we will discuss
below.

Shor’s Algorithm

Factoring a large number, 𝑁 , into its primes is a hard problem. In the 1970s, it was shown
that factorization can be mapped into a period finding problem, which is also a hard problem,
and there are no known classical algorithms that can do this computation efficiently. However,
the period finding problem has the obvious structure of periodicity, and quantum computers
can make use of this internal feature of the problem to yield exponential speed up over classical
algorithms.

Below are the steps of the factorization algorithm:

• You pick a random number 𝑎 which is smaller than
√

𝑁 .
• Calculate the 𝑝𝑒𝑟𝑖𝑜𝑑 of 𝑎, denoted by 𝑟, so that 𝑎𝑟 − 1 is a multiple of 𝑁 , i.e. 𝑎𝑟 =

1 Mod 𝑁
– This means (𝑎𝑟/2 − 1)(𝑎𝑟/2 + 1) is a multiple of 𝑁 .

2

– Therefore 𝑎𝑟/2 ± 1 and 𝑁 have common divisors.

• Calculate GCD(𝑁, 𝑎𝑟/2 ± 1), GCD being greatest common divisor.

Except for the computation of the period 𝑟, there are very efficient methods to execute the
algorithm above, and the period finding part is exactly where Shor’s algorithm is applied.

Here are the steps of Shor’s quantum algorithm to compute the period of a number 𝑎:

1. Select the smallest integer 𝑞 satisfying 𝑁2 < 𝑄 < 2𝑁2 where 𝑄 = 2𝑞,
2. Prepare the input register as a uniform superposition of numbers 0 to 𝑄 − 1:

• |𝑠⟩ = 1√𝑄 ∑𝑄−1
𝑥=0 |𝑥⟩.

3. Append the ancillary bit |𝑓(𝑥)⟩ = |𝑎𝑥 Mod 𝑁⟩ to get the composite state as:

• 1√𝑄 ∑𝑄−1
𝑥=0 |𝑥, 𝑓(𝑥)⟩.

4. Apply the inverse QFT to the input register only (i.e. exclude the ancillary bit):

• 1
𝑄 ∑𝑄−1

𝑥=0 ∑𝑄−1
𝑦=0 𝑒 2𝜋𝑖𝑥𝑦

𝑄 |𝑦, 𝑓(𝑥)⟩
• The first thing we note is the periodicity and the range of 𝑓 . As the index 𝑥 runs

from 0 to 𝑄 − 1, 𝑓(𝑥), executing Mod 𝑁 operation, will run from 0 to 𝑁 − 1. So we
can reorder the summation over 𝑥 with respect to the output 𝑓(𝑥), which we will
name as 𝑧 for simplicity. So ∑𝑄−1

𝑥=0 = ∑𝑁−1
𝑧=0 ∑𝑥∈{0,1,⋯,𝑄−1};𝑓(𝑥)=𝑧

• 𝑥 ranges from 0 to 𝑄 − 1, and let’s mark the smallest value of 𝑥 that satisfies the
relation 𝑓(𝑥) = 𝑧 as 𝑥0. Due to the periodicity of 𝑓 , the total number of instances
of 𝑥 that will satisfy 𝑓(𝑥) = 𝑧 is ⌊𝑄−𝑥0−1

𝑟 + 1⌋. Let’s label these 𝑥 values with a
dummy index 𝑏. Essentially we are mapping 𝑥 to 𝑥0 + 𝑟𝑏 to write the summation
as:

• ∑𝑥∈{0,1,⋯,𝑄−1};𝑓(𝑥)=𝑧 𝑒 2𝜋𝑖𝑥𝑦
𝑄 = ∑⌊ 𝑄−𝑥0−1

𝑟 ⌋
𝑏=0 𝑒

2𝜋𝑖𝑦(𝑥0+𝑟𝑏)
𝑄 = 𝑒

2𝜋𝑖𝑥0𝑦
𝑄 ∑⌊ 𝑄−𝑥0−1

𝑟 ⌋
𝑏=0 𝑒 2𝜋𝑖𝑟𝑏𝑦

𝑄

5. Make a measurement on the ancillary bit. This will result in an integer 𝑧. The input
register state will collapse into a superposition in the subspace of 𝑥 values that satisfies
𝑓(𝑥) = 𝑧, which is what we have calculated above.

• This is a superposition of many states, which will cause interference. If the phase
factors 𝑒 2𝜋𝑖𝑟𝑏𝑦

𝑄 align, it will be constructive interference. For the phase factors to be
aligned as they are summed over with the index 𝑏, it is required to have 𝑒 2𝜋𝑖𝑟𝑦

𝑄 to
be close to the real axis, i.e. 𝑟𝑦

𝑄 needs to be close to some integer 𝑐. When we make
a measurement on the input register state, due to the constructive interference, we
will most probably measure a value of 𝑦 such that 𝑟𝑦

𝑄 will be close to an integer.

6. Perform classical continued fraction expansion:

3

• So we have the measured value of 𝑦, and we know the value of 𝑄 since we set it at the
beginning of the algorithm. Therefore, we know the value 𝑦

𝑄 . We also know that 𝑦𝑟
𝑄

needs to be close to an integer 𝑐, which implies that 𝑦
𝑄 is close to 𝑐

𝑟 . What we need
to do is to express 𝑦

𝑄 as a fraction 𝑑
𝑠 with the conditions 𝑠 < 𝑁 and ∣ 𝑦

𝑄 − 𝑑
𝑠 < 1

2𝑄 ∣.
This computation can be executed efficiently by classical algorithms.

7. The value of 𝑠 is very likely to be the period 𝑟 we are looking for, and we can verify this
quickly by computing if 𝑎𝑠 = 1 Mod 𝑁 . If so, we have successfully computed the period,
otherwise we try other candidates 𝑑

𝑠 around 𝑦
𝑄 . If none of them works, we go back to

step 1 and start over.

4

	Basic Elements of Quantum Algorithms
	Shor's Algorithm

