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This article explores renewal processes and their relationship to Poisson processes
in probability theory. We examine the fundamental concepts of interarrival times,
counting processes, and their distributions, with particular emphasis on exponen-
tial and gamma distributions. The discussion includes rigorous derivations of key
probability distributions, including the distribution of arrival times and the num-
ber of events. Special attention is given to clearing up common misconceptions
about Poisson processes and their relationship with exponential distributions. The
article provides both intuitive explanations and mathematical proofs, making it
accessible to readers with basic probability theory knowledge while maintaining
mathematical rigor.
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Renewal processes and Poisson processes are fundamental concepts in probability theory and
stochastic processes, with wide-ranging applications in fields such as queueing theory, reliability
engineering, and operations research. A renewal process is a generalization of the Poisson
process, where the time between events (inter-arrival times) is not necessarily exponentially
distributed [1]. The Poisson process, a special case of renewal processes, is characterized by
events occurring continuously and independently at a constant average rate [2]. Arrival times,
which represent the moments when events occur in these processes, play a crucial role in
analyzing system behavior and performance [3]. Understanding these concepts is essential for
modeling and analyzing various real-world phenomena, from customer arrivals at a service
center to the occurrence of equipment failures in industrial settings.

One classic example of renewal theory in action is when you’re dealing with things that break
or need maintenance. Picture this: you have a component that you install at time 0. It fails
at some random time 𝑇1, and you swap it out for a new one. This new component also has a
random lifespan 𝑇2, just like 𝑇1, and the cycle continues. If you’re wondering how many times
you’ve replaced this thing by time 𝑡, you will find the answer in this post.

If you are well versed in statistics, you will know that there are lots of confusion
around the Poisson processes. People will call our good old friend, the exponential
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distribution, a Poisson distribution, for example. Or they will say arrival times are
Poisson distributed, or they will say the total time is Poisson distributed. None
these are correct; and we will address them all in this post!

However, before we do all that, you may find it usefull to look at an earlier post Musings on
Exponential distribution, which is also tucked in under the button below.

Notes on Exponential distribution

Many processes in physics are defined by exponential distribution. Have you ever won-
dered why that is the case? That is because it is the only one available for microscopic
systems. A microscopic system, such as a radioactive atom has no internal memory.
And the only continuous distribution with no memory is the exponential distribution.
Let’ prove this. Consider a random variable 𝑋 defined by its probability function
𝐹𝑋(𝑥) = 𝑃 (𝑋 ≤ 𝑥), which is read as probability of 𝑋 being less than a given num-
ber 𝑥. Typically 𝑋 is associated with some kind of event or failure, and that is why a
counter part of 𝐹𝑋 is defined as the survival function 𝑆𝑋 Define the survival function
𝑆(𝑡):

𝑆𝑋(𝑥) = 1 − 𝐹𝑋(𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 > 𝑥). (1)
What is the conditional probability of 𝑋 > 𝑥 + 𝑠 given that it survived until 𝑥?

𝑃(𝑋 > 𝑥 + 𝑠|𝑋 > 𝑥) = 𝑃(𝑋 > 𝑥 + 𝑠)
𝑃(𝑋 > 𝑥) = 𝑆𝑋(𝑥 + 𝑠)

𝑆𝑋(𝑥) . (2)

The critical observation is this: if the process has no memory, the conditional probability
can only depend on the difference in observation points. Think about it this way: the
probability of an atom to decay before 𝑡 = 1 year given that it is intact at 𝑡 = 0 is the
same as the probability of it decaying within the 𝑡 = 11𝑡ℎ year given that it is intact at
𝑡 = 10 year. Atoms don’t remember how old they are. Therefore we require that the
right hand side of Eq. 2 has no 𝑥 dependence, that is:

𝑆𝑋(𝑥 + 𝑠)
𝑆𝑋(𝑥) = 𝑆𝑋(𝑠) ⟹ 𝑆𝑋(𝑥 + 𝑠) = 𝑆𝑋(𝑥)𝑆𝑋(𝑠), (3)

which is begging for the exponential function due to its homomorphism property mapping
multiplication to addition. To show this explicitly, consider the repeated application of
𝑆(𝑥) 𝑝 times

[𝑆𝑋(𝑥)]𝑝 = 𝑆𝑋(𝑥)𝑆𝑋(𝑥) ⋯ 𝑆𝑋(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝 times

= 𝑆𝑋(𝑝𝑥), (4)

where 𝑝 is a natural number. This certainly holds for natural numbers, but we can do
better. Now consider another counting number 𝑞 and apply 𝑆(𝑥/𝑞) 𝑞 times

[𝑆𝑋 (𝑥
𝑞 )]

𝑞
= 𝑆𝑋 (𝑥

𝑞 ) 𝑆𝑋 (𝑥
𝑞 ) ⋯ 𝑆𝑋 (𝑥

𝑞 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞 times

= 𝑆𝑋 (𝑞 𝑥
𝑞 ) = 𝑆𝑋(𝑥) ⟹ 𝑆𝑋 (𝑥

𝑞 ) = [𝑆𝑋 (𝑥)]
1
𝑞 . (5)
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Since we can make this work for 𝑝 and 1/𝑞, it also works for 𝑝/𝑞:

𝑆𝑋 (𝑝
𝑞 𝑥) = 𝑆𝑋 (𝑝𝑥

𝑞 ) = [𝑆𝑋 (𝑥
𝑞 )]

𝑝
= [(𝑆𝑋(𝑥))

1
𝑞 ]

𝑝
= [𝑆𝑋(𝑥)]

𝑝
𝑞 . (6)

That is

𝑆𝑋 (𝑎𝑥) = [𝑆𝑋(𝑥)]𝑎 , (7)

where 𝑎 = 𝑝
𝑞 is a rational number. What about irrational numbers? Since the rationals are

a dense subset of the real numbers, for every real number we can find rational numbers
arbitrarily close to it[4]. The continuity of 𝑆 ensure that we can upgrade 𝑎 from an
rational number to a real number. One last thing to do is to show that we are getting
our old friend 𝑒 out of this. Setting 𝑥 = 1 in Eq. 7 gives

𝑆𝑋 (𝑎) = [𝑆𝑋(1)]𝑎 = (exp {− ln [𝑆𝑋(1)]})𝑎 ≡ 𝑒−𝜆𝑎, (8)

where 𝜆 = − ln [𝑆𝑋(1)] > 0.
This derivation is very satisfying, particularly for a non-mathematician like me. But it
is a bit too rigorous. We can do a physicist version of this derivation. We start from Eq.
3, take the log and the derivative of both sides with respect to 𝑠:

𝑑
𝑑𝑠 log (𝑆𝑋(𝑥 + 𝑠)) = 𝑆′

𝑋(𝑥 + 𝑠)
𝑆𝑋(𝑥 + 𝑠)

𝑑
𝑑𝑠 log (𝑆𝑋(𝑥)𝑆𝑋(𝑠)) = 𝑑

𝑑𝑠 [log (𝑆𝑋(𝑥)) + log (𝑆𝑋(𝑠))] = 𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) . (9)

They are equal to each other:

𝑆′
𝑋(𝑥 + 𝑠)

𝑆𝑋(𝑥 + 𝑠) = 𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) ≡ −𝜆, (10)

where we realized that the terms are functions of 𝑠 or 𝑥 + 𝑠, and they cannot possibly be
equal to each other unless they are equal to a constant. Integrating, we get:

𝑆′
𝑋(𝑠)

𝑆𝑋(𝑠) = 𝑑
𝑑𝑠 [log (𝑆𝑋(𝑠))] = −𝜆 ⟹ 𝑆𝑋(𝑠) = 𝑒−𝜆𝑠, (11)

which completes the proof.
One of the difficulties with such proofs is that, they are done backwards. In fact, life
would have been much easier if we started from the so called hazard function. I talked
about this in one of my earlier posts: Musings on Weibull distribution. If we start from
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a hazard function (ratio of failures to the survivors) ℎ and define everything else on top,
this is how things go:

ℎ(𝑡) ≡ 𝑓(𝑡)
1 − 𝐹(𝑡) =

𝑑
𝑑𝑡𝐹(𝑡)

1 − 𝐹(𝑡) = − 𝑑
𝑑𝑡 [𝑙𝑛 (1 − 𝐹(𝑡))] ⟹ 𝐹(𝑡) = 1 − 𝑒− ∫𝑡

0 𝑑𝜏ℎ(𝜏).(12)

If you go with the simplest assumption (memory-less, constant) ℎ = 𝜆, you get the
exponential distribution.

Definitions

In this setup, 𝑇1, 𝑇2, … are your independent, identically distributed, nonnegative random
variables representing those random interarrival times. Let us set up the definitions for 𝑇𝑖:

𝐹𝑇𝑖
(𝑥) = 𝑃(𝑇𝑖 < 𝑥). (13)

𝑇𝑖 are the interaarival times, i.e., it is the time difference between the consequentive events,
and by definition they are positive definite. The total time until the 𝑛th arrival is a simple
sum:

𝑆𝑛 =
𝑛

∑
𝑖=1

𝑇𝑖. (14)

We can also create a counter that will return the number of arrivals at any given time 𝑡:

𝑁(𝑡) =
∞

∑
𝑖=1

𝜃 (𝑆𝑖 ≤ 𝑡) , (15)

where 𝜃 is the standard unit-step function. To avoid any confusion, let’s put all of these
definition in Table 1,

Table 1: A quick summary of parameters.

Parameter Description Definition Distribution Density

𝑇𝑖 Interarrival time - Exponential 𝜆𝑒−𝜆𝑡

𝑆𝑛 Total time until 𝑛th arrival ∑𝑛
𝑖=1 𝑇𝑖 Gamma 𝜆 (𝜆𝑡)𝑛−1

(𝑛−1)! 𝑒−𝜆𝑡

𝑁(𝑡) Prob of 𝑛 arrivals by 𝑡 ∑∞
𝑖=1 𝜃 (𝑆𝑖 ≤ 𝑡) Poisson 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛!

and illustrate them in Figure 1.
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Figure 1: Random events arriving at 𝑡 = 𝑆1, 𝑆2 ⋯. Interarrival times are labeled as 𝑇1, 𝑇2 ⋯,
and finally 𝑁 = 1, 2 ⋯ simply counts the arrivals.

𝑁(𝑡) and 𝑆𝑛 are both random variables. The main goal is to figure out the distribution of
𝑁(𝑡), and we are going to do that in two different ways.

A tedious solution

The set of outcomes with 𝑁(𝑡) will be larger than an integer 𝑛 for a given 𝑡 is equal to the set
of outcomes with 𝑆𝑛(𝑡) being less than 𝑡. That is:

{𝑁 ≥ 𝑛} = {𝑆𝑛 ≤ 𝑡} ⟹ 𝑃 (𝑁 ≥ 𝑛) = 𝑃 (𝑆𝑛 ≤ 𝑡) , (16)

where we dropped the argument of 𝑁 to simplify the notation.

We will use some features of sets. Consider two events 𝐴 and 𝐵. The probability of 𝐴 can be
split into two disjoint parts:

1. The probability that 𝐴 occurs and 𝐵 also occurs: 𝑃(𝐴 ∩ 𝐵).
2. The probability that 𝐴 occurs and 𝐵 does not occur: 𝑃(𝐴 ∩ 𝐵𝑐), which is illustrated in

Figure 2.

A B

A ∩Bc A ∩B Ac ∩B

Figure 2: The Venn diagram of the sets 𝐴 and 𝐵.

Since these two scenarios cover all possibilities for event 𝐴, we can write:

ℙ(𝐴) = ℙ(𝐴 ∩ 𝐵) + ℙ(𝐴 ∩ 𝐵𝑐). (17)
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To find the probability of 𝐴 intersecting with the complement of 𝐵, isolate ℙ(𝐴 ∩ 𝐵𝑐) from
the equation:

ℙ(𝐴 ∩ 𝐵𝑐) = ℙ(𝐴) − ℙ(𝐴 ∩ 𝐵). (18)

This equation shows that the probability of 𝐴 occurring while 𝐵 does not occur is the difference
between the probability of 𝐴 and the probability that both 𝐴 and 𝐵 occur together. In our
particular case, 𝐴 = {𝑁 ≥ 𝑛} and 𝐵 = {𝑁 ≥ 𝑛 + 1} and 𝐴 will be a subset of 𝐵. Using this
relation we can compute the probability of having exactly 𝑛 arrivals at time 𝑡:

ℙ (𝑁 = 𝑛) = ℙ (𝑁 ≥ 𝑛) − ℙ (𝑁 ≥ 𝑛 + 1) . (19)

Let’s define the following probability:

𝐺𝑛(𝑡) ≡ ℙ (𝑆𝑛 > 𝑡) , (20)

and attempt to calculate it recursively. We first single out one of the events, say 𝑇1 and split
the possibilities into two cases:

1. Total time, 𝑆𝑛, turns out to be larger than 𝑡 simply because 𝑇1 is larger than 𝑡.
2. Total time, 𝑆𝑛, turns out to be larger than 𝑡 because 𝑇1 outcome was 𝜏 where 𝜏 < 𝑡, but

the rest of the events added up to a value larger thah 𝑡 − 𝑥, that is 𝑇2 + ⋯ + 𝑇𝑛 > 𝑡 − 𝑥.

Since these two events are mutually exclusive, we can add the individual probabilities to get
the total probability:

𝐺𝑛(𝑡) = ℙ (𝑆𝑛 > 𝑡) = ℙ (𝑇1 > 𝑡) + ∫
𝑡

0
𝑑𝜏𝑓𝑇1

(𝜏)ℙ (𝑇2 + 𝑇3 + ⋯ + 𝑇𝑛 > 𝑡 − 𝜏)

= 𝑒−𝜆𝑡 + 𝜆 ∫
𝑡

0
𝑑𝜏𝑒−𝜆𝜏𝐺𝑛−1(𝑡 − 𝜏). (21)

This is a integral equation and we can attempt to solve it by a series expansion with the
following trial function:

𝐺𝑛(𝑡) = 𝑒−𝜆𝑡
∞

∑
𝑘=0

𝑐(𝑛)
𝑘 (𝜆𝑡)𝑘, (22)

where we put 𝑒−𝜆𝑡 in front to get some simplification in the following steps. The first thing we
should do is to check if this will be an infinite series or it will terminate at some point. When
𝑛 = 1, this should reduce to the distribution of a single exponential random variable:

𝐺1(𝑡) = 𝑒−𝜆𝑡
∞

∑
𝑘=0

𝑐(𝑛)
𝑘 (𝜆𝑡)𝑘 = 𝑒−𝜆𝑡𝑐(1)

0 + 𝑒−𝜆𝑡
∞

∑
𝑘=1

𝑐(1)
𝑘 (𝜆𝑡)𝑘 ≡ 𝑒−𝜆𝑡, (23)
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from which we get the first set of coefficients as:

𝑐(1)
0 = 1, and 𝑐(1)

𝑘 = 0 for 𝑘 ≥ 1. (24)

We now insert Eq. 22 into Eq. 21

𝐺𝑛(𝑡) = 𝑒−𝜆𝑡 + 𝜆 ∫
𝑡

0
𝑑𝜏𝑒−𝜆𝜏𝑒−𝜆(𝑡−𝜏)

∞
∑
𝑘=0

𝑐(𝑛−1)
𝑘 𝜆𝑘(𝑡 − 𝜏)𝑘

= 𝑒−𝜆𝑡 + 𝜆𝑒−𝜆𝑡
∞

∑
𝑘=0

𝑐(𝑛−1)
𝑘 𝜆𝑘 ∫

𝑡

0
𝑑𝜏(𝑡 − 𝜏)𝑘 = 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡

∞
∑
𝑘=0

𝑐(𝑛−1)
𝑘

(𝜆𝑡)𝑘+1

𝑘 + 1

= 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡
∞

∑
𝑘=1

𝑐(𝑛−1)
𝑘−1
𝑘 (𝜆𝑡)𝑙. (25)

Comparing this with Eq. 22 gives the recursive relation between the coefficients:

𝑐(𝑛)
𝑘 = 𝑐(𝑛−1)

𝑘−1
𝑘 . (26)

We have to address one glaring problem: the coefficients ratio goes like 1/𝑘, i.e., 𝑐𝑘 ∝ 1/𝑘!. If
we were to let the upper limit of the summation go to infinity, the result of the sum will be
like 𝑒𝜆𝑡. This is the same as the prefactor 𝑒−𝜆𝑡, and combined together 𝐺𝑛(𝑡) ≃ 1 for large 𝑡.
This is a problem since this probability is expected to go to zero when 𝑡 is large. In fact it
has to be 0 when 𝑡 → ∞ as the sum of numbers cannot be larger than ∞. How do we address
this? To be totally honest, it took me way longer than it should to figure this out. It finally
clicked when I remembered what we did in the case of quantum mechanical oscillator. We had
the very same issue there; you can find the details in my earlier post: Quantum Harmonic
Oscillator. We have to terminate the series! We can get a hint from Eq. 24, and truncate the
upper limit at 𝑛 − 1. Putting this back in and merging the first term into the summation we
get:

𝐺𝑛(𝑡) = 𝑒−𝜆𝑡
𝑛−1
∑
𝑘=0

(𝜆𝑡)𝑘

𝑘! . (27)

After all this work, we can trail back to Eq. 19, and use Eqs. 21 and 16 to get:

ℙ (𝑁 = 𝑛) = ℙ (𝑁 ≥ 𝑛) − ℙ (𝑁 ≥ 𝑛 + 1) = ℙ (𝑆𝑛 < 𝑡) − ℙ (𝑆𝑛+1 < 𝑡)
= [1 − ℙ (𝑆𝑛 ≥ 𝑡)] − [1 − ℙ (𝑆𝑛+1 ≥ 𝑡)]

= ℙ (𝑆𝑛+1 ≥ 𝑡) − ℙ (𝑆𝑛 ≥ 𝑡) = 𝐺𝑛+1(𝑡) − 𝐺𝑛(𝑡) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛! , (28)

which is the Poisson distribution. We can verify its normalization:
∞

∑
𝑛=0

ℙ (𝑁 = 𝑛) = 𝑒−𝜆𝑡
∞

∑
𝑛=0

(𝜆𝑡)𝑛

𝑛! = 𝑒−𝜆𝑡𝑒𝜆𝑡 = 1. (29)
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A nifty solution

We will take advantage of powerful Laplace transformation. We start with the distribution of
the sum.

The distribution of 𝑆𝑛(𝑡)

The distribution of 𝑆𝑛 is also interesting. I looked into that problem in this post Musings on
Gamma distribution, which is also cloned over here.

𝑆𝑛 = ∑𝑛
𝑖=1 𝑇𝑖 is a sum of 𝑛 random numbers. It is illustrative to consider 𝑛 = 2 case and

figure out the distribution of the sum of two random numbers 𝑇1 and 𝑇2. The cumulative
probability density of 𝑆2 ≡ 𝑇1 + 𝑇2 is given by:

𝐹𝑆2
(𝑡) = 𝑃 (𝑇1 + 𝑇2 < 𝑡) = ∫

𝑡1+𝑡2<𝑡
𝑓𝑇1

(𝑡1)𝑓𝑇2
(𝑡2)𝑑𝑡1𝑑𝑡2 = ∫

∞

−∞
∫

𝑡−𝑡2

−∞
𝑓𝑇2

(𝑡2)𝑑𝑡2𝑓𝑇1
(𝑡1)𝑑𝑡1

= ∫
∞

−∞
𝐹𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1. (30)

The probability density function is the derivative of Eq. 30:

𝑓𝑆2
(𝑡) = 𝑑

𝑑𝑡𝐹𝑆2
(𝑡) = ∫

∞

−∞
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1 = ∫

𝑡

0
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1, (31)

where the limits of the integral are truncated to the range where 𝑓 ≠ 0. The integral in Eq.31
is known as the convolution integral:

𝑓𝑇1
⊛ 𝑓𝑇2

≡ ∫
∞

−∞
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1, (32)

In the special case of exponential distributions, 𝑓 is parameterized by a single parameter 𝜆,
which represents the failure rate, and it is given by

𝑓𝑇 (𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 > 0. (33)

From Eq. 31 we get:

𝑓𝑆2
(𝑡) = ∫

𝑡

0
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1 = 𝜆2 ∫

𝑡

0
𝑒−𝜆(𝑡−𝑡1)𝑒−𝜆𝑡1𝑑𝑡1 = 𝜆2𝑒−𝜆𝑡 ∫

𝑡

0
𝑑𝑡1 = 𝜆2 𝑡 𝑒−𝜆𝑡,(34)

which is actually a Γ distribution. The corresponding cumulative failure function is:

𝐹𝑆2
(𝑡) = ∫

𝑡

0
𝑑𝜏𝑓𝑆2

(𝜏) = 𝜆2 ∫
𝑡

0
𝑑𝜏 𝜏 𝑒−𝜆𝜏 = −𝜆2 𝑑

𝑑𝜆 [∫
𝑡

0
𝑑𝜏 𝑒−𝜆𝜏] = 𝜆2 𝑑

𝑑𝜆 [𝑒−𝜆𝑡 − 1
𝜆 ]

= 1 − 𝑒−𝜆𝑡(1 + 𝜆𝑡). (35)
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This is pretty neat. Can we move to the next level and add another 𝑇𝑖, i.e., 𝑆3 = 𝑇1 +𝑇2 +𝑇3 =
𝑆2 + 𝑇3. We just reiterate Eq. 31 with probability density for 𝑆2 from Eq. 34.

𝑓𝑆3
(𝑡) = ∫

𝑡

0
𝑓𝑇3

(𝑡 − 𝑡1)𝑓𝑆2
(𝑡1) = 𝜆3 ∫

𝑡

0
𝑒−𝜆(𝑡−𝑡1)𝑡1 𝑒−𝜆𝑡1𝑑𝑡1 = 𝜆3 𝑡2

2 𝑒−𝜆𝑡, (36)

which was very easy! In fact, we can keep adding more terms. The exponentials kindly drop out
of the 𝑡1 integral, and we will be simply integrating powers of 𝑡1, and for 𝑆𝑛 ≡ 𝑇1 +𝑇2 +⋯+𝑇𝑛
to get:

𝑓𝑆𝑛
(𝑡) = 𝜆𝑛 𝑡𝑛−1

(𝑛 − 1)!𝑒
−𝜆𝑡. (37)

It will be fun if we redo this with some advanced mathematical tools, such as the Laplace
transform, which is defined as:

̃𝑓(𝑠) ≡ ℒ[𝑓(𝑡)] = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡𝑓(𝑡). (38)

There are a couple of nice features of the Laplace transforms we can make use of. The first
one is the mapping of convolution integrals in 𝑡 space to multiplication in 𝑠 space. To show
this, let’s take the Laplace transform of Eq. 32:

ℒ[𝑓𝑇1
⊛ 𝑓𝑇2

] = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡 ∫

∞

−∞
𝑓𝑇2

(𝑡 − 𝑡1)𝑓𝑇1
(𝑡1)𝑑𝑡1 = ∫

∞

−∞
𝑑𝑡1 ∫

∞

0
𝑑𝑡 𝑒−𝑠 (𝑡−𝑡1)𝑓𝑇2

(𝑡 − 𝑡1)𝑒−𝑠 𝑡1𝑓𝑇1
(𝑡1). (39)

Let’s take a closer look at the middle integral:

∫
∞

0
𝑑𝑡 𝑒−𝑠 (𝑡−𝑡1)𝑓𝑇2

(𝑡 − 𝑡1) = ∫
∞

−𝑡1

𝑑𝑡 𝑒−𝑠𝜏𝑓𝑇2
(𝜏) = ∫

∞

0
𝑑𝜏 𝑒−𝑠𝜏𝑓𝑇2

(𝜏) = ̃𝑓𝑇2
(𝑠), (40)

where we first defined 𝜏 = 𝑡 − 𝑡1, and then shifted the lower limit of the integral back to 0
since 𝑓𝑇2

(𝑡) = 0 for 𝑡 < 0. Putting this back in, we have the nice property:

ℒ[𝑓𝑇1
⊛ 𝑓𝑇2

] = ̃𝑓𝑇1
(𝑠) ̃𝑓𝑇2

(𝑠). (41)

How do we make use of this? The probability distribution of a sum of random numbers is the
convolution of individual distributions:

𝑓𝑆𝑛
= 𝑓𝑇1

⊛ 𝑓𝑇2
⊛ ⋯ ⊛ 𝑓𝑇𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times

. (42)
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We can map this convolution to multiplications in 𝑠 space:

̃𝑓𝑆𝑛
(𝑠) ≡ ℒ[𝑓𝑆𝑛

] = ̃𝑓𝑇1
̃𝑓𝑇2

⋯ ̃𝑓𝑇𝑛⏟⏟⏟⏟⏟
𝑛 times

=
𝑛

∏
𝑗=1

̃𝑓𝑇𝑗
. (43)

When the individual random numbers are independent and have the same distribution, we
get:

̃𝑓𝑆𝑛
(𝑠) = ( ̃𝑓𝑇 )

𝑛
. (44)

If the random numbers are exponentially distributed, as in Eq. 33, their Laplace transforma-
tion is easy to compute:

̃𝑓(𝑠) = ∫
∞

0
𝑑𝑡 𝑒−𝑠 𝑡𝜆𝑒−𝜆𝑡 = 𝜆

𝑠 + 𝜆, (45)

which means the Laplace transform of the sum is:

̃𝑓𝑆𝑛
(𝑠) = ( 𝜆

𝑠 + 𝜆)
𝑛

. (46)

We will have to inverse transform Eq. 46, which will require some trick. This brings us to the
second nifty property of Laplace transform. Consider transforming 𝑡𝑓(𝑡):

ℒ[𝑡𝑓(𝑡)] = ∫
∞

0
𝑑𝑡 𝑡𝑒−𝑠 𝑡𝑓(𝑡) = − 𝑑

𝑑𝑠 [∫
∞

0
𝑑𝑡𝑒−𝑠 𝑡𝑓(𝑡)] = − 𝑑

𝑑𝑠 [ ̃𝑓(𝑠)] . (47)

Therefore, we see that Laplace transform maps the operation of multiplying with 𝑡 to taking
negative derivatives in 𝑠 space:

𝑡 ⟺ − 𝑑
𝑑𝑠 (48)

We re-write Eq. 46 as:

̃𝑓𝑆𝑛
(𝑠) = ( 𝜆

𝑠 + 𝜆)
𝑛

= 𝜆𝑛

(𝑛 − 1)! (− 𝑑
𝑑𝑠)

𝑛
( 𝜆

𝑠 + 𝜆) . (49)

Using the property in Eq. 48, we can invert the transform:

𝑓𝑆𝑛
(𝑡) = ℒ−1[𝑓𝑆𝑛

] = = 𝜆𝑛 𝑡𝑛−1

(𝑛 − 1)!𝑒
−𝜆𝑡, (50)

which is what we got earlier in Eq. 37.
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The distribution of 𝑁(𝑡)

We have built most of the mathematical machinery, however, yet we need one more trick.
Consider the Laplace transform of the following integral:

ℒ [∫
𝑡

0
𝑓(𝜏)𝑑𝜏] = ∫

∞

0
𝑑𝑡 𝑒−𝑠 𝑡 ∫

𝑡

0
𝑓(𝜏)𝑑𝜏 = ∫

∞

0
𝑑𝑡 𝑒−𝑠 𝑡𝐹(𝑡) = −1

𝑠 ∫
∞

0

𝑑
𝑑𝑡 [𝑒−𝑠 𝑡] 𝐹 (𝑡)𝑑𝑡

= −1
𝑠 ∫

∞

0

𝑑
𝑑𝑡 [𝑒−𝑠 𝑡𝐹(𝑡)] 𝑑𝑡 + 1

𝑠 ∫
∞

0
𝑒−𝑠 𝑡 𝑑

𝑑𝑡𝐹(𝑡)𝑑𝑡 = 1
𝑠𝐹 [0] +

̃𝑓(𝑠)
𝑠

=
̃𝑓(𝑠)
𝑠 , (51)

where 𝐹(0) = 0 for cumulative probability functions.

With this information, we can update Eq. 44 with the Laplace transform of the cumulative
probability function:

̃𝑓𝑆𝑛
(𝑠) = ( ̃𝑓𝑇 )

𝑛
, and ̃𝐹𝑆𝑛

(𝑠) = 1
𝑠 ( ̃𝑓𝑇 )

𝑛
. (52)

Remember from Eq. 28

ℙ (𝑁 = 𝑛) = ℙ (𝑆𝑛 < 𝑡) − ℙ (𝑆𝑛+1 < 𝑡) = 𝐹𝑆𝑛
− 𝐹𝑆𝑛+1

, (53)

with the corresponding Laplace transform

ℙ̃ (𝑁 = 𝑛) (𝑠) = ̃𝐹𝑆𝑛
− ̃𝐹𝑆𝑛+1

= 1
𝑠 ( ̃𝑓𝑇 )

𝑛
(1 − ̃𝑓𝑇 ) = ( 𝜆

𝑠 + 𝜆)
𝑛 𝑠

𝑠 + 𝜆. (54)

The expected value of the number of arrival is:

𝐻(𝑡) ≡ ℙ (𝑁) =
∞

∑
𝑛=0

𝑛ℙ (𝑁 = 𝑛) =
∞

∑
𝑛=0

𝑛 [ℙ (𝑆𝑛 < 𝑡) − ℙ (𝑆𝑛+1 < 𝑡)] =
∞

∑
𝑛=1

𝐹𝑆𝑛
. (55)

The Laplace transform is simple to compute:

𝐻̃(𝑠) =
∞

∑
𝑛=1

̃𝐹𝑆𝑛
= 1

𝑠
∞

∑
𝑛=1

̃𝑓𝑆𝑛
. (56)

The renewal density ℎ(𝑡) is defined as the rate of change of the expectation value:

ℎ(𝑡) = 𝑑
𝑑𝑡𝐻(𝑡) ⟹ ℎ̃(𝑠) = 𝑠𝐻̃(𝑠) =

∞
∑
𝑛=1

̃𝑓𝑆𝑛
. (57)
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When the individual random numbers are independent and have the same distribution, ̃𝑓𝑆𝑛
are given in Eq. 44. Putting that back in we get:

ℎ̃(𝑠) =
∞

∑
𝑛=1

̃𝑓𝑆𝑛
=

∞
∑
𝑛=1

( ̃𝑓𝑇 )
𝑛

= ̃𝑓𝑇
∞

∑
𝑛=0

( ̃𝑓𝑇𝑗
)

𝑛
=

̃𝑓𝑇
1 − ̃𝑓𝑇

. (58)

Equivalently,

ℎ̃(𝑠) = ̃𝑓𝑇 + ℎ̃(𝑠) ̃𝑓𝑇 . (59)

This easily converts to 𝑡 domain:

ℎ(𝑡) = 𝑓𝑇 + ∫
𝑡

𝑜
𝑑𝜏ℎ(𝑡 − 𝜏)𝑓𝑇 (𝜏). (60)

Summary

Let us update Table 1 with new definitions to get Table 2 for the case of exponentially dis-
tributed 𝑇 ′𝑠:

Table 2: A detailed summary of parameters and definitions.

Parameter Description Definition Distribution Density

𝑇𝑖 Interarrival time - Exponential 𝜆𝑒−𝜆𝑡

𝑆𝑛 Total time until 𝑛th arrival ∑𝑛
𝑖=1 𝑇𝑖 Gamma 𝜆 (𝜆𝑡)𝑛−1

(𝑛−1)! 𝑒−𝜆𝑡

𝑁(𝑡) Prob of 𝑛 arrivals by 𝑡 ∑∞
𝑖=1 𝜃 (𝑆𝑖 ≤ 𝑡) Poisson 𝑒−𝜆𝑡 (𝜆𝑡)𝑛

𝑛!
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