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We take a close look at the tedious steps of second quantization, which is a
fundamental concept in quantum mechanics and solid state physics. The goal is
the put together the basic formalism. We will later use this to study superfluidity
and superconductivity..
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This is a quick review of relatively boring steps of the second quantization formalism. The term
“second quantization” refers to a mathematical formalism that extends quantum mechanics
from single-particle systems to many-particle systems. The name arises from the historical de-
velopment of quantum theory: “first quantization” involved replacing classical variables with
operators, converting classical mechanics to quantum mechanics for single particles. Second
quantization takes this process a step further by promoting quantum wave functions them-
selves to operators (creation and annihilation operators), effectively quantizing the quantum
fields. This approach elegantly handles identical particles and provides the mathematical
framework for quantum field theory. While the name might suggest a sequential application
of quantization, it’s more accurately viewed as a different mathematical representation of the
same physical theory, particularly useful for systems with variable particle numbers.

I will closely follow the presentation in [1] with slightly modified notation. I will also use
borrowed ideas from [2]. All the credit for the content goes to [1] and [2], while any mistakes
or inaccuracies are entirely my own.

Identical Particles

We will look at 𝑁 identical particles. We will denote the variables of the 𝑖th particles as
𝜁𝑖 = (x𝑖, 𝜎𝑖), which are the position and spin degrees of freedom. The Hamiltonian for the
system is given by

𝐻 = 𝐻(𝜁1, 𝜁2, … , 𝜁𝑁), (1)
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and it is symmetric in the variables 𝜁1, 𝜁2, … , 𝜁𝑁 . We write a wave function in the form

𝜓 = 𝜓(𝜁1, 𝜁2, … , 𝜁𝑁). (2)

Permutation Operator

The permutation operator 𝑃𝑖𝑗 swaps the variables 𝜁𝑖 and 𝜁𝑗:

𝑃𝑖𝑗𝜓(… , 𝜁𝑖, … , 𝜁𝑗, …) = 𝜓(… , 𝜁𝑗, … , 𝜁𝑖, …). (3)

Since swapping the variables twice brings them back to their original state, we have 𝑃 2
𝑖𝑗 = 1.

This implies that the eigenvalues of 𝑃𝑖𝑗 are ±1. Furthermore since the Hamiltonian is invariant
under the permutation of the variables, we have

[𝑃𝑖𝑗, 𝐻] = 0. (4)

The permutation group 𝑆𝑁 which consists of all permutations of 𝑁 objects has 𝑁! elements.
Every permutation 𝑃 can be represented as a product of transpositions 𝑃𝑖𝑗. An element is
said to be even (odd) when the number of 𝑃𝑖𝑗’s is even (odd).

Properties

(i) Permutation operators do not change the inner product of two states.

⟨𝜑|𝜓⟩ = ∫ 𝑑𝑥1 ⋯ 𝑑𝑥𝑖 ⋯ 𝑑𝑥𝑗 ⋯ 𝑑𝑥𝑁𝜑∗(𝜁1, … , 𝜁𝑖, … , 𝜁𝑗, … , 𝜁𝑁)𝜓(𝜁1, … , 𝜁𝑖, … , 𝜁𝑗, … , 𝜁𝑁)

= ∫ 𝑑𝑥1 ⋯ 𝑑𝑥𝑖 ⋯ 𝑑𝑥𝑗 ⋯ 𝑑𝑥𝑁𝑃𝑖𝑗𝜑∗(𝜁1, … , 𝜁𝑗, … , 𝜁𝑖, … , 𝜁𝑁)𝑃𝑖𝑗𝜓(𝜁1, … , 𝜁𝑗, … , 𝜁𝑖, … , 𝜁𝑁)
= ⟨𝑃𝜑|𝑃 𝜓⟩, (5)

where we swapped the integration variables.

(ii) 𝑃𝑖𝑗 is unitary.

Given an operator 𝐴, its adjoint 𝐴† is defined as usual by

⟨𝜑|𝐴|𝜓⟩ = ⟨𝐴†𝜑|𝜓⟩. (6)

We will apply this to 𝑃 ≡ 𝑃𝑖𝑗:

⟨𝜑|𝑃 |𝜓⟩ = ⟨𝑃 −1𝑃𝜑|𝑃𝜓⟩ = ⟨𝑃𝜑| (𝑃 −1)† |𝑃𝜓⟩ = ⟨𝜑| (𝑃 −1)† |𝜓⟩, (7)
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which implies:

𝑃 = (𝑃 −1)† ⟺ 𝑃 † = 𝑃 −1 ⟺ 𝑃𝑃 † = 1 (8)

(iii) Any symmetric operator 𝑆 commutes with the permutation operator 𝑃𝑖𝑗.

[𝑃𝑖𝑗, 𝑆] = 0 (9)

Proof:

⟨𝜓𝑖|𝑆|𝜓𝑗⟩ = ⟨𝑃𝜓𝑖|𝑆|𝑃𝜓𝑗⟩ = ⟨𝜓𝑖|𝑃 †𝑆𝑃 |𝜓𝑗⟩ ⟺ 𝑃 †𝑆𝑃 = 𝑆 ⟹ [𝑃 , 𝑆] = 0, (10)

where we renamed the integration variables as we did in Eq. (5).

This shows that the matrix elements of 𝑆 are the same in the states 𝜓𝑖 and in the permutated
states 𝑃 𝜓𝑖. The states 𝜓 and 𝑃𝜓 are experimentally indistinguishable.

Completely Symmetric and Antisymmetric States

The totally symmetric and totally antisymmetric states 𝜓𝑠 and 𝜓𝑎 are special states:

𝑃𝑖𝑗𝜓𝑎(… , 𝜁𝑖, … , 𝜁𝑗, …) = ±𝜓𝑎(… , 𝜁𝑖, … , 𝜁𝑗, …) (11)

for all 𝑃𝑖𝑗. We will construct the basis states of the 𝑁 -particle system by taking the tensor
product of the single-particle states |𝑖⟩: |1⟩, |2⟩, ⋯. We will further label the states with the
particle label 𝛼 ∈ [1, 𝑁]: |𝑖⟩𝛼 ≡ |𝑖𝛼⟩, which means that the 𝛼-th particle is in state |𝑖⟩. With
this notation, the basis states of the 𝑁 -particle system are:

|𝑖1, ⋯ , 𝑖𝛼, ⋯ , 𝑖𝑁⟩. (12)

If the set of states {|𝑖⟩} is a complete and orthonormal one, the product states are also complete
orthonormal in the space of 𝑁 -particle states.

The fully symmetrized/antisymmetrized basis states are then defined by

𝑆±|𝑖1, 𝑖2, ⋯ , 𝑖𝑁⟩ ≡ 1√
𝑁!

∑
𝑃

(±1)𝑃 𝑃 |𝑖1, 𝑖2, ⋯ , 𝑖𝑁⟩. (13)
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Fock Space

Imagine that there are 𝑛1 particles in state 1, 𝑛2 particles in state 2, so and so forth. The
total number of particles is 𝑁 :

∞
∑
𝑖=1

𝑛𝑖 = 𝑁. (14)

We now construct the state for 𝑁 particles in the fully symmetrized basis:

|𝑛1, 𝑛2, …⟩ = 𝑆+|𝑖1, 𝑖2, … , 𝑖𝑁⟩ ⋅ 1
√𝑛1!𝑛2! ⋯

(15)

The factor (𝑛1!𝑛2! ⋯)−1/2 acccounts for the combinations in each state. This serves as a
complete set of completely symmetric 𝑁 -particle states. The orthonormality and completeness
relations are given by

⟨𝑛1, 𝑛2, ⋯ |𝑛′
1, 𝑛′

2, ⋯⟩ = 𝛿𝑛1,𝑛′
1
𝛿𝑛2,𝑛′

2
⋯

∑
𝑛1,𝑛2,⋯

|𝑛1, 𝑛2, ⋯⟩⟨𝑛1, 𝑛2, ⋯ | = 𝟙 (16)

The direct sum of vacuum state |0⟩, i.e., 0 particles, one particle, etc is called the Fock space.

It is important to note that all of these operators live in a space of fixed number of particles.
They preserve the number of particles. We will now define particle creation and annihilation
operators, which will allow us to move between different particle number states.

𝑎𝑖 and 𝑎†
𝑖

Let us define a state[2]:

|Ψ⟩ = ∑
𝑛1,𝑛2,⋯

𝑐𝑛1,𝑛2,⋯|𝑛1, 𝑛2, ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩. (17)

We will define the creation and annihilation operators as objects that raise or lower the number
of particles in a given state:

𝑎†
𝑗|𝑛1, 𝑛2, … , 𝑛𝑗, …⟩ ∝ |𝑛1, 𝑛2, … , 𝑛𝑗 + 1, …⟩ (18)

̂𝑎𝑗|𝑛1, 𝑛2, … , 𝑛𝑗, …⟩ ∝ |𝑛1, 𝑛2, … , 𝑛𝑗 − 1, …⟩ (19)
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If you replay it backwards in time, the effect of the creation operator, 𝑎†
𝑗, is to remove particle

from the state. This implies that 𝑎†
𝑗 is the Hermitian adjoint of 𝑎𝑗, hence they deserve the †

symbol. As 𝑎𝑗 keeps lowering the number of particles, it should not come as a surprise that it
has a null vector:

̂𝑎𝑗|𝑛1, 𝑛2, … , 𝑛𝑗 = 0, …⟩ = 0 (20)

The vacuum state is defined as the state that has 0 as the eigenvalue of the annihilation
operators: ̂𝑎𝑗|∅⟩ = 0 for any 𝑗.

We now derive the commutation relations for the creation and annihilation operators. Assume
that we start from a given state and apply ̂𝑎†

𝑖 ̂𝑎†
𝑗 we will get a new state with 𝑛𝑖 + 1 particles in

state 𝑖 and 𝑛𝑗 + 1 particles in state 𝑗. Instead, if we apply ̂𝑎†
𝑗 ̂𝑎†

𝑖 , we will still get a state with
𝑛𝑖 + 1 particles in state 𝑖 and 𝑛𝑗 + 1 particles in state 𝑗. This should be physically equivalent
to the first case, hence we should have:

̂𝑎†
𝑖 ̂𝑎†

𝑗|Ψ⟩ = ̂𝑎†
𝑖 ̂𝑎†

𝑗|Ψ⟩ = 𝜆 ̂𝑎†
𝑗 ̂𝑎†

𝑖 |Ψ⟩, (21)

where 𝜆 is some complex number. Since |Ψ⟩ is an arbitrary state, we need to operator to
satisfy:

̂𝑎†
𝑖 ̂𝑎†

𝑗 − 𝜆 ̂𝑎†
𝑗 ̂𝑎†

𝑖 = 0. (22)

Note that 𝑖 and 𝑗 are just dummy variables, and we can swap them, 𝑖 ↔ 𝑗, to get:

̂𝑎†
𝑗 ̂𝑎†

𝑖 − 𝜆 ̂𝑎†
𝑖 ̂𝑎†

𝑗 = 0. (23)

Now insert Eq. (22) into Eq. (23) to eliminate ̂𝑎†
𝑖 ̂𝑎†

𝑗. This leads to

(1 − 𝜆2) ̂𝑎†
𝑗 ̂𝑎†

𝑖 = 0. (24)

For this relation to hold for any 𝑖 and 𝑗, we must have

𝜆 = ±1. (25)

We have two distinct cases:

Case 1: Commutation relation when 𝜆 = +1:

̂𝑎†
𝑖 ̂𝑎†

𝑗 − ̂𝑎†
𝑗 ̂𝑎†

𝑖 = [ ̂𝑎†
𝑖 , ̂𝑎†

𝑗] = 0, (26)
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Case 2: Anti-commutation relation when 𝜆 = −1:

̂𝑎†
𝑖 ̂𝑎†

𝑗 + ̂𝑎†
𝑗 ̂𝑎†

𝑖 = { ̂𝑎†
𝑖 , ̂𝑎†

𝑗} = 0 (27)

We can now approach the ̂𝑎𝑖 and ̂𝑎†
𝑗 cases. Consider the operators ̂𝑎𝑗 and ̂𝑎†

𝑖 with 𝑗 ≠ 𝑖.

̂𝑎𝑗 ̂𝑎†
𝑖 |Ψ⟩ = 𝜇 ̂𝑎†

𝑖 ̂𝑎𝑗|Ψ⟩. (28)

The argument above identically applies if 𝑖 ≠ 𝑗 implying 𝜇 = ±1. For different 𝑗 and 𝑘 we
therefore find

[ ̂𝑎𝑗, ̂𝑎†
𝑖 ] = 0 or { ̂𝑎𝑗, ̂𝑎†

𝑖 } = 0 (29)

For 𝑖 = 𝑗, let’s take|Ψ⟩ = |∅⟩:

( ̂𝑎𝑖 ̂𝑎†
𝑖 − 𝜇 ̂𝑎†

𝑖 ̂𝑎𝑖)|∅⟩ = |∅⟩, (30)

we find for the two possible values of 𝜇

̂𝑎𝑖 ̂𝑎†
𝑖 − ̂𝑎†

𝑖 ̂𝑎𝑖 = 1 or ̂𝑎𝑖 ̂𝑎†
𝑖 + ̂𝑎†

𝑖 ̂𝑎𝑖 = 1 (31)

which is equivalent to

[ ̂𝑎𝑖, ̂𝑎†
𝑖 ] = 1 or { ̂𝑎𝑖, ̂𝑎†

𝑖 } = 1. (32)

The full commutation relations can be summarized as:

[ ̂𝑎𝑖, ̂𝑎𝑗] = [ ̂𝑎†
𝑖 , ̂𝑎†

𝑗] = 0 and [ ̂𝑎𝑖, ̂𝑎†
𝑗] = 𝛿𝑖𝑗. (33)

We are now in a position to define the normalizations of the creation and annihilation operators.
Note that in Eq. (30) we implicitly assumed a normalization:

̂𝑎𝑖 ̂𝑎†
𝑖 |∅⟩ = 1|∅⟩, (34)

We want to define the overall normalization consistent with Eq. (34), and furthermore, we
want have as particle number operator 𝑁 = ∑𝑖 ̂𝑎†

𝑖 ̂𝑎𝑖.

For this we can define the operators with the proper normalization of the creation operator
as:
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𝑎†
𝑖 | ⋯ , 𝑛𝑖, ⋯⟩ = √𝑛𝑖 + 1 | ⋯ , 𝑛𝑖 + 1, ⋯⟩ (35)

Taking the adjoint of this equation and relabeling 𝑛𝑖 → 𝑛′
𝑖, we have

⟨⋯ , 𝑛′
𝑖, ⋯ |𝑎𝑖 = √𝑛′

𝑖 + 1 ⟨⋯ , 𝑛′
𝑖 + 1, ⋯ | (36)

Multiplying this equation by | ⋯ , 𝑛𝑖, ⋯⟩ yields:

⟨⋯ , 𝑛′
𝑖, ⋯ |𝑎𝑖| ⋯ , 𝑛𝑖, ⋯⟩ = √𝑛𝑖 𝛿𝑛′

𝑖+1,𝑛𝑖
(37)

Eq. (35) uniquely determines the normalization of the adjoint operator:

𝑎𝑖| ⋯ , 𝑛𝑖, ⋯⟩ = √𝑛𝑖 | ⋯ , 𝑛𝑖 − 1, ⋯⟩ for 𝑛𝑖 ≥ 1. (38)

We can see this by resolving the identity operator in the space of 𝑁 -particle states:

𝑎𝑖| ⋯ , 𝑛𝑖, ⋯⟩ =
∞

∑
𝑛′

𝑖=0
| ⋯ , 𝑛′

𝑖, ⋯⟩⟨⋯ , 𝑛′
𝑖, ⋯ |𝑎𝑖| ⋯ , 𝑛𝑖, ⋯⟩ (39)

=
∞

∑
𝑛′

𝑖=0
| ⋯ , 𝑛′

𝑖, ⋯⟩√𝑛𝑖𝛿𝑛′
𝑖+1,𝑛𝑖

(40)

= {
√𝑛𝑖| ⋯ , 𝑛𝑖 − 1, ⋯⟩ for 𝑛𝑖 ≥ 1
0 for 𝑛𝑖 = 0 (41)

Also note that the normalization is consistent with the commutation relations:

[𝑎𝑖, 𝑎𝑗] = 0 (42)

[𝑎†
𝑖 , 𝑎†

𝑗] = 0 (43)

[𝑎𝑖, 𝑎†
𝑗] = 𝛿𝑖𝑗 (44)

It is clear that Eq. (42) holds for 𝑖 = 𝑗, since 𝑎𝑖 commutes with itself. For 𝑖 ≠ 𝑗, it follows
from Eq. (38) that:
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𝑎𝑖𝑎𝑗| ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ = √𝑛𝑖√𝑛𝑗| ⋯ , 𝑛𝑖 − 1, ⋯ , 𝑛𝑗 − 1, ⋯⟩ = 𝑎𝑗𝑎𝑖| ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ (45)

which proves Eq. (42), and by taking the hermitian conjugate, also Eq. (43).

For 𝑗 ≠ 𝑖 we have:

𝑎𝑖𝑎†
𝑗| ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ = √𝑛𝑖√𝑛𝑗 + 1| ⋯ , 𝑛𝑖 − 1, ⋯ , 𝑛𝑗 + 1, ⋯⟩ = 𝑎†

𝑗𝑎𝑖| ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ (46)

and

(𝑎𝑖𝑎†
𝑖 − 𝑎†

𝑖 𝑎𝑖)| ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ = (√𝑛𝑖 + 1√𝑛𝑖 + 1 − √𝑛𝑖
√𝑛𝑖) | ⋯ , 𝑛𝑖, ⋯ , 𝑛𝑗, ⋯⟩ (47)

hence also proving Eq. (44).
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