Separation of variables in spherical coordinates
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This article presents a comprehensive derivation of the separation of variables
technique applied to partial differential equations in spherical coordinates. We ex-
amine the process of decomposing the Laplace equation into its radial and angular
components, leading to solutions involving spherical harmonics. The discussion
includes a detailed analysis of the radial dependence, angular components, and
their relationship through Sturm-Liouville theory. This mathematical treatment
is fundamental to various physics applications, including quantum mechanics, elec-
tromagnetism, and gravitational field theory.
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We would like solve the Laplace’s equation in spherical coordinates as illustrated in Figure 1.
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Figure 1: The spherical coordinates.

In the spherical coordinates, the Laplace equation reads:
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We can separate the variables as ¥(r,0,¢) = R(r)O(0)®(¢):
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Since the left-hand side of Eq. 3 depends on r and # only, and the right one depends on ¢
only, overall they can only be equal to a constant, which we will call m?. This separates out
the ® function. Furthermore, since ¢ is the angle, the solutions have to be 27 periodic, which

gives:
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Putting this back in Eq. 3 and dividing the it by sin® 0 we get:
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Similarly, since the left-hand side of Eq. 5 depends on r only, and the right one depends on 6
only, overall they can only be equal to a constant, which we will call c.



Radial dependence

The form of the solution for R(r) is easy to guess since the derivatives are balanced by the
powers of r, and therefore, a function of the form 7! will preserve its form up to a coefficient.
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However, notice the unexpected symmetry of I(I + 1) under [ — —I — 1. This means, if 7! is a
solution, so is r—!~!. This suggests the following form of solution for R:
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Angular part
Putting this back in Eq. 5 yields
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Now define cos § = z, which gives % = %% = —sin 0% and insert this back in Eq.8:
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Let’s first attempt to solve this for m = 0 using power series expansion[1]:
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Inserting this back to Eq. 9 we get:
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This implies
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which is the recurrence equation for the expansion coefficients.

This is a remarkable equation since it has profound consequences. Earlier in this blog, we
looked at the Quantum Harmonic Oscillator and showed that for a similar series expansion to
converge, we had to have the energy quantized. In this particular problem, until this point,
we have no indication of [ being an integer. But now, we see that it has to be an integer so
that the series truncates for k > [ (for every other k). That’s the first observation.

The second observation is associated with the parity symmetry of the original differential Eq.
9, which is invariant under x — —x upto the overall sign. This shows that the solutions will
also be eigenstates of the parity operator, i.e., odd and even k terms should not mix.

We have a couple of ways of terminating the series. The first one is what we have discussed
above, i.e., settin [ to an integer £*, which will zero out every other c,. The ¢;’s, with k > [,
not addressed by this truncation need to be eliminated directly by their root coefficient, ¢, or
c¢;. To be more specific, take an example | = 1. The ¢,’s with odd k quickly terminate after
k=1: ¢,0,---. The even ones will keep growing: c,, acg, Bacy, -. The only way to tame this
series is by killing it at its root, i.e., by setting it a; = 0 so that all the even terms drop out.
This shows that even odd powers of x will not mix preserving respecting the parity symmetry
of the original equation.

From Eq. 12, we can explicitly write the fist few Legendre polynomials:
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Having shown that Legendre polynomials solve the differential equation (with m = 0),
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We now need to address the full equation with m # 0. The idea would be to differentiate m
times to create the m? term. For this, we will need the Leibniz’s formula:

A [ Sl g et i (15)

dx™ £ \k dxk daxn—F


tetraquark.netlify.app/post/quantum_hosc/index.html?src=coil_calcs

Let’s dive into the differentiation:
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where u = aél L. We still need to modify the equation further so that it matches Eq.9. First
of all, we note that the equation we want to get at was self-adjoint, and we kind of destroyed
it as we acted with %. Let’s restore it and see where it takes us.

Sturm—Liouville theory

We are going to use some machinery from Sturm-Liouville theory on second order differential
equations. Consider the second order differential operator £[1]:
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We are going to define the inner product in the function space as an integral in a range [a, b].
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We can integrate Eq.18 by parts. Let’s look at each term one by one:
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Putting this back in Eq.18 gives:
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where the adjoint operator £ is defined as:
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Although £u looks pretty different from £u in Eq. 17, they can actually be the same if p, = Do
Such £ operators are self-adjoint. Furthermore, note that the boundary term also drops out
for self-adjoint operators.

The good news is that if an equation is not self adjoint, it can be converted into that form if
it gets multiplied by the following factor:
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Let’s revisit Eq. 16 to find the factor that will make the equation self-adjoint:
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We will take this factor, multiply Eq. 16 with it to get:
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Finally, we will want to absord half power of that coefficient into u by defining
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to get
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The new function v satisfies the following equation:
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which is identical to Eq. 9. In conclusion, the angular part of the solution is given by the
associated Legendre polynomials as below:
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Full solution

Note that the highest power in P, is [, and for m > [, we run out of z’s to differentiate. This
automatically limits |m| to [. Putting all pieces together, the full solution to the Laplace

equation reads:
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